googlymunja32
- 4
- 0
<br /> <br /> What would be the converse of this conjecture, How can you prove whether or not the converse holds?<br /> <br /> thanksHallsofIvy said:So you are asking, "Is it true that np- n is divisible by p for p any prime?"
Yes, it is and for exactly the reason you state: if p is prime then \left(\begin{array}{c}p \\ i\end{array}\right) for p prime and 0< i< p is divisible by p. That itself can be proven directly from the definition:
\left(\begin{array}{c}p \\ i\end{array}\right)= \frac{p!}{i!(p-i)!}
as long as i is neither 0 nor p, 0<p-i< p and so neither i! nor (p- i)! have a factor of p. Since p! does, the binomial coefficient is divisible by p. (We need p to be prime so that other factors in i! and (p- i)! do not "combine" to cancel p.)
Now, to show that np- n is divisible by p, do exactly what mathman suggested.
First, when n= 1, 1p- 1= 0 which is divisible by p. Now assume the statement is true for some k: kp- k= mp for some integer m. Then, by the binomial theorem,
(k+1)^p= \sum_{i=0}^p \left(\begin{array}{c}p \\ i\end{array}\right) k^i[/itex]<br /> subtracting k+1 from that does two things: first it cancels the i=0 term which is 1. Also we can combine the "k" with the i= p term which is k<sup>p</sup> so we have k<sup>p</sup>- k= mp. The other terms, all with 0< i< p, contain, as above, factors of p.