The definition of random sample mean and convergence

bgd2007
Messages
1
Reaction score
0
Hi.
I have the following question:
I am a student and my teacher defined the random sample as following:

Def:A simple and repeated random sample of size n from the population (omega,K)
for the characteristic X:omega->R is a random vector
V=(X_1,X_2,...,X_n) defined on (omega)^n and with values in R^n as follows:

for O_n=(o_1,o_2,...,o_n) in omega^n we define X_i(O_n)=X(o_i)
Then he proves that X_1,...,X_n are stochastic independent and have the same repartition as the characteristic for study,X,and he calls them sample random variables
Things are well till now.
Then he defines a new "sample random variable", called "the sample mean" like this:

m(X,O_n):omega^n ->R

m(X,O_n)=[X_1(O_n)+X_2(O_n)+...+X_n(O_n)]/n.
Good.

Now(and here is the problem) he states that the
sequence of random variables m(X,O_n) for n converges almost sure to M(X) the mean of the characteristic.
What i don't understand is the follwing:
how is this a sequence of random variables?
I mean,when we define a sequence of functions don't they have the same domain?
Here, m(X,O_n) has the domain omega^n, which changes with n!
Isn't this a problem??
I looked on the definition of almost sure convergence and it says that all X_n are defined on the same set!

And another problem is the proof of this teacher for the almost sure convergence of the sequence m(X;O_n)-
he applies the law of large numbers to the sequence X_n!
But how the hell can he do that,since
in

m(X;O_n) we have X_1,...,X_n defined on omega^n and in
m(X;O_n+1) the random variables X_1,...X_n,X_n+1 are defined on omega^(n+1)
so X_1,...,X_n in m(X;O_n+1) are different from X_1,...,X_n in omega^n.
Is this teacher right?
 
Physics news on Phys.org
Good points; why don't you raise them with your teacher?
 
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...

Similar threads

Replies
5
Views
2K
Replies
6
Views
2K
Replies
1
Views
2K
Replies
27
Views
3K
Replies
9
Views
2K
Replies
3
Views
3K
Back
Top