The Diagonal Method: Proving Sets are Infinite

Aditya89
Messages
23
Reaction score
0
Can anybody tell me the Canter Method of proving that certain sets are infinite? It is called as "Diagonal Method".
 
Physics news on Phys.org
Hey thanks, Zurtex! But from the first link, it does not become clear why it is called "Diagonal Method". Also, can you explain the link between first proof and second proof, please? Also, please tell me how to construct a bijection between Rationals & Reals.
 
Aditya89 said:
Hey thanks, Zurtex! But from the first link, it does not become clear why it is called "Diagonal Method". Also, can you explain the link between first proof and second proof, please?

See the wiipedia article, step 5 in the proof singles out the 'diagonal' terms of the list. I only count one proof in the links he gave.

Aditya89 said:
Also, please tell me how to construct a bijection between Rationals & Reals.

There isn't one. The diagonal argument shows the reals are uncountable while the rationals are countable.
 
Oh! I'm sorry for saying reals & rationals! It's integers and rationals! And why do you count only one proof?
 
The rationals are famously countable, try constructing the proof yourself. There are two variants. One is anothert kind of diagonal argument, and the other is by remembering that rational numbers are a subset of the pairs of integers.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top