The Divergence of the Klein-Gordon Energy-Momentum Tensor

GooberGunter
Messages
1
Reaction score
0
Homework Statement
Prove that the Energy-Momentum Tensor for the Klein-Gordon Equation does not diverge
$$\partial_\mu T^{\mu\nu}=0$$
Relevant Equations
$$T^{μν}=∂^μϕ∂^νϕ−η^{μν}L$$
$$L=\frac{1}{2}\partial^2 \phi - \frac{1}{2}m^2 \phi^2$$
I've tried this problem so, so, so so so many times. Given the equations above, the proof starts easily enough:
$$\partial_\mu T^{\mu\nu}=\partial_\mu (∂^μ ϕ∂^ν ϕ)-\eta^{\mu\nu}\partial_\mu[\frac{1}{2}∂^2ϕ−\frac{1}{2}m^2ϕ^2]$$
apply product rule to all terms
$$=\partial^\nu \phi \cdot \partial_\mu \partial^\mu \phi + \partial^\mu \phi \cdot \partial_\mu \partial^\nu \phi - \eta^{\mu\nu}[\frac{1}{2}(\partial_\sigma \phi \cdot \partial_\mu \partial^\sigma \phi + \partial^\sigma \phi \cdot \partial_\mu \partial_\sigma \phi)-\frac{1}{2}m^2\partial_\mu(\phi^2)]$$
And the equation of motion starts to appear:
$$=\partial^\nu \phi \cdot \partial_\mu \partial^\mu \phi + \eta^{\mu\nu}(m^2 \phi \partial_\mu \phi) +\partial^\mu \phi \cdot \partial_\mu \partial^\nu \phi - \eta^{\mu\nu}\frac{1}{2}(\partial_\sigma \phi \cdot \partial_\mu \partial^\sigma \phi + \partial^\sigma \phi \cdot \partial_\mu \partial_\sigma \phi)$$
Finally we can eliminate 2 of the 5 terms
$$=\partial^\nu \phi \cdot (\partial_\mu \partial^\mu \phi + m^2 \phi) +\partial^\mu \phi \cdot \partial_\mu \partial^\nu \phi - \eta^{\mu\nu}\frac{1}{2}(\partial_\sigma \phi \cdot \partial_\mu \partial^\sigma \phi+ \partial^\sigma \phi \cdot \partial_\mu \partial_\sigma \phi)$$
$$=\partial^\nu \phi[0] +\partial^\mu \phi \cdot \partial_\mu \partial^\nu \phi - \eta^{\mu\nu}\frac{1}{2}(\partial_\sigma \phi \cdot \partial_\mu \partial^\sigma \phi + \partial^\sigma \phi \cdot \partial_\mu \partial_\sigma \phi)$$

This is the last step I arrive at
$$=\partial^\mu \phi \cdot \partial_\mu \partial^\nu \phi - \eta^{\mu\nu}\frac{1}{2}(\partial_\sigma \phi \cdot \partial_\mu \partial^\sigma \phi + \partial^\sigma \phi \cdot \partial_\mu \partial_\sigma \phi)$$
Every solution I've found online has an error or skips this crucial step.

This solutions manual from a UMD course skips a step between (31) and (32) and too readily removes the 1/2 coefficient in (31). I'm sure its a typo.
This solution from another post just raises the index of the first derivative and lowers the sigma index in the second derivative, but the closest I can replicate is:

$$=\partial^\mu \phi \cdot \partial_\mu \partial^\nu \phi - \frac{1}{2}(\eta^{\mu\nu} \delta^{\sigma}_\nu\partial_\sigma \phi \cdot \partial_\mu \partial^\sigma \phi + \partial^\sigma \phi \cdot \partial_\mu \eta^{\mu\nu} \delta^{\sigma}_\nu \partial_\sigma \phi)$$
$$=\partial^\mu \phi \cdot \partial_\mu \partial^\nu \phi - \frac{1}{2}(\partial^\nu \phi \cdot \partial_\mu \partial^\nu\phi + \partial^\nu \phi \cdot \partial_\mu \partial^\nu \phi)$$

Depending on what you decide to contract, you end up with 2 equations that don't resolve to 0.
$$\partial^\mu \phi \cdot \partial_\mu \partial^\nu \phi -\partial^\nu \phi \cdot \partial_\mu \partial^\nu\phi$$
$$\partial^\mu \phi \cdot \partial_\mu \partial^\nu \phi - \partial^\mu \phi \cdot \partial_\mu \partial^\mu \phi$$

My understanding of tensor notation is still a little shaky, I only studied a chapter from a mathematical methods textbook. Where did I go wrong? Any help is greatly appreciated!
 
Physics news on Phys.org
GooberGunter said:
This is the last step I arrive at
$$=\partial^\mu \phi \cdot \partial_\mu \partial^\nu \phi - \eta^{\mu\nu}\frac{1}{2}(\partial_\sigma \phi \cdot \partial_\mu \partial^\sigma \phi + \partial^\sigma \phi \cdot \partial_\mu \partial_\sigma \phi)$$​
I think this is good so far.

Show that the first term may be written $$\partial^\mu \phi \cdot \partial_\mu \partial^\nu \phi =\partial_\mu \phi \cdot \partial^\mu \partial^\nu \phi =\partial_\sigma \phi \cdot \partial^\sigma \partial^\nu \phi$$

Show that the second term may be written $$ \eta^{\mu\nu}\frac{1}{2}(\partial_\sigma \phi \cdot \partial_\mu \partial^\sigma \phi + \partial^\sigma \phi \cdot \partial_\mu \partial_\sigma \phi) = \frac{1}{2}(\partial_\sigma \phi \cdot \partial^\nu \partial^\sigma \phi + \partial^\sigma \phi \cdot \partial^\nu \partial_\sigma \phi)$$ Then proceed onward.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top