The Divergence of the Klein-Gordon Energy-Momentum Tensor

GooberGunter
Messages
1
Reaction score
0
Homework Statement
Prove that the Energy-Momentum Tensor for the Klein-Gordon Equation does not diverge
$$\partial_\mu T^{\mu\nu}=0$$
Relevant Equations
$$T^{μν}=∂^μϕ∂^νϕ−η^{μν}L$$
$$L=\frac{1}{2}\partial^2 \phi - \frac{1}{2}m^2 \phi^2$$
I've tried this problem so, so, so so so many times. Given the equations above, the proof starts easily enough:
$$\partial_\mu T^{\mu\nu}=\partial_\mu (∂^μ ϕ∂^ν ϕ)-\eta^{\mu\nu}\partial_\mu[\frac{1}{2}∂^2ϕ−\frac{1}{2}m^2ϕ^2]$$
apply product rule to all terms
$$=\partial^\nu \phi \cdot \partial_\mu \partial^\mu \phi + \partial^\mu \phi \cdot \partial_\mu \partial^\nu \phi - \eta^{\mu\nu}[\frac{1}{2}(\partial_\sigma \phi \cdot \partial_\mu \partial^\sigma \phi + \partial^\sigma \phi \cdot \partial_\mu \partial_\sigma \phi)-\frac{1}{2}m^2\partial_\mu(\phi^2)]$$
And the equation of motion starts to appear:
$$=\partial^\nu \phi \cdot \partial_\mu \partial^\mu \phi + \eta^{\mu\nu}(m^2 \phi \partial_\mu \phi) +\partial^\mu \phi \cdot \partial_\mu \partial^\nu \phi - \eta^{\mu\nu}\frac{1}{2}(\partial_\sigma \phi \cdot \partial_\mu \partial^\sigma \phi + \partial^\sigma \phi \cdot \partial_\mu \partial_\sigma \phi)$$
Finally we can eliminate 2 of the 5 terms
$$=\partial^\nu \phi \cdot (\partial_\mu \partial^\mu \phi + m^2 \phi) +\partial^\mu \phi \cdot \partial_\mu \partial^\nu \phi - \eta^{\mu\nu}\frac{1}{2}(\partial_\sigma \phi \cdot \partial_\mu \partial^\sigma \phi+ \partial^\sigma \phi \cdot \partial_\mu \partial_\sigma \phi)$$
$$=\partial^\nu \phi[0] +\partial^\mu \phi \cdot \partial_\mu \partial^\nu \phi - \eta^{\mu\nu}\frac{1}{2}(\partial_\sigma \phi \cdot \partial_\mu \partial^\sigma \phi + \partial^\sigma \phi \cdot \partial_\mu \partial_\sigma \phi)$$

This is the last step I arrive at
$$=\partial^\mu \phi \cdot \partial_\mu \partial^\nu \phi - \eta^{\mu\nu}\frac{1}{2}(\partial_\sigma \phi \cdot \partial_\mu \partial^\sigma \phi + \partial^\sigma \phi \cdot \partial_\mu \partial_\sigma \phi)$$
Every solution I've found online has an error or skips this crucial step.

This solutions manual from a UMD course skips a step between (31) and (32) and too readily removes the 1/2 coefficient in (31). I'm sure its a typo.
This solution from another post just raises the index of the first derivative and lowers the sigma index in the second derivative, but the closest I can replicate is:

$$=\partial^\mu \phi \cdot \partial_\mu \partial^\nu \phi - \frac{1}{2}(\eta^{\mu\nu} \delta^{\sigma}_\nu\partial_\sigma \phi \cdot \partial_\mu \partial^\sigma \phi + \partial^\sigma \phi \cdot \partial_\mu \eta^{\mu\nu} \delta^{\sigma}_\nu \partial_\sigma \phi)$$
$$=\partial^\mu \phi \cdot \partial_\mu \partial^\nu \phi - \frac{1}{2}(\partial^\nu \phi \cdot \partial_\mu \partial^\nu\phi + \partial^\nu \phi \cdot \partial_\mu \partial^\nu \phi)$$

Depending on what you decide to contract, you end up with 2 equations that don't resolve to 0.
$$\partial^\mu \phi \cdot \partial_\mu \partial^\nu \phi -\partial^\nu \phi \cdot \partial_\mu \partial^\nu\phi$$
$$\partial^\mu \phi \cdot \partial_\mu \partial^\nu \phi - \partial^\mu \phi \cdot \partial_\mu \partial^\mu \phi$$

My understanding of tensor notation is still a little shaky, I only studied a chapter from a mathematical methods textbook. Where did I go wrong? Any help is greatly appreciated!
 
Physics news on Phys.org
GooberGunter said:
This is the last step I arrive at
$$=\partial^\mu \phi \cdot \partial_\mu \partial^\nu \phi - \eta^{\mu\nu}\frac{1}{2}(\partial_\sigma \phi \cdot \partial_\mu \partial^\sigma \phi + \partial^\sigma \phi \cdot \partial_\mu \partial_\sigma \phi)$$​
I think this is good so far.

Show that the first term may be written $$\partial^\mu \phi \cdot \partial_\mu \partial^\nu \phi =\partial_\mu \phi \cdot \partial^\mu \partial^\nu \phi =\partial_\sigma \phi \cdot \partial^\sigma \partial^\nu \phi$$

Show that the second term may be written $$ \eta^{\mu\nu}\frac{1}{2}(\partial_\sigma \phi \cdot \partial_\mu \partial^\sigma \phi + \partial^\sigma \phi \cdot \partial_\mu \partial_\sigma \phi) = \frac{1}{2}(\partial_\sigma \phi \cdot \partial^\nu \partial^\sigma \phi + \partial^\sigma \phi \cdot \partial^\nu \partial_\sigma \phi)$$ Then proceed onward.
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
It's given a gas of particles all identical which has T fixed and spin S. Let's ##g(\epsilon)## the density of orbital states and ##g(\epsilon) = g_0## for ##\forall \epsilon \in [\epsilon_0, \epsilon_1]##, zero otherwise. How to compute the number of accessible quantum states of one particle? This is my attempt, and I suspect that is not good. Let S=0 and then bosons in a system. Simply, if we have the density of orbitals we have to integrate ##g(\epsilon)## and we have...
Back
Top