Okay, the Lie algebra of SU(n) is given by [ t^{ a } , t^{ b } ] = i f^{ a b c } \ t^{ c } , \ \ a = 1 , 2 , \cdots , n^{ 2 } - 1 . The dimension of the generator matrices ( t^{ a } )_{ A B } is equal to the dimension of the representation space on which they act. In the defining (fundamental) representation, they are given by n \times n hermitian traceless matrices ( t^{ a } )_{ \alpha \beta } , \alpha = 1 , 2 , \cdots , n.
The fact that the gauge fields transform in the adjoint representation (I assume you know why that is so!) means that, for any spacetime index \mu and any point x, we have n^{ 2 } - 1 REAL NUMBERS A_{ \mu }^{ a } ( x ). In other words, it is an element in ( n^{ 2 } - 1 )-dimensional vector space. However, it is more convenient to represent the gauge field (equivalently) by a traceless hermitian n \times n matrix formed by the following linear combination \mathbb{ A }_{ \mu } = \frac{ 1 }{ 2 } A^{ a }_{ \mu } \ t^{ a } , \ \ \ \ \ (1) or, in the fundamental representation, ( \mathbb{ A }_{ \mu } )_{ \alpha \beta }= \frac{ 1 }{ 2 } A^{ a }_{ \mu } \ ( t^{ a } )_{ \alpha \beta } . \ \ \ \ (2) Using the trace normalization \mbox{ tr } ( t^{ a } t^{ b } ) = 2 \delta^{ a b } we can invert (1) to obtain A_{ \mu }^{ b } = \mbox{ tr } ( \mathbb{ A }_{ \mu } \ t^{ b } ) = ( \mathbb{ A }_{ \mu } )_{ \alpha \beta } ( t^{ b } )_{ \beta \alpha } . \ \ \ \ (3) The consistency between (3) and (2) follows from the following tensor identity \frac{ 1 }{ 2 } ( t^{ a } )_{ \alpha \beta } ( t^{ a } )_{ \gamma \eta } = \delta_{ \alpha \eta } \ \delta_{ \beta \gamma } - \frac{ 1 }{ n } \delta_{ \alpha \beta } \ \delta_{ \gamma \eta } . \ \ (4) Finally, I am going to give you some homework to do, and trust me if you manage to do them you will never get confuse about these stuff again. If you struggle with them you can ask me for help.
Ex(1) Drive the identity (4).
Ex(2) Let U_{ \alpha }{}^{ \beta } = \delta_{ \alpha }{}^{ \beta } + i \epsilon_{ \alpha }{}^{ \beta } be an infinitesimal SU(n) transformation, where \epsilon is hermitian \epsilon_{ \alpha }{}^{ \beta } = \epsilon^{ \beta }{}_{ \alpha } = ( \epsilon^{ \alpha }{}_{ \beta } )^{ * } . A (Lorentz) scalar field \phi_{ \alpha } (in the fundamental rep. [n]) and its complex conjugate \phi^{ \alpha } = ( \phi_{ \alpha } )^{ * } (in the conjugate rep. [n^{ * }]) transform according to \phi_{ \alpha } \to \phi_{ \alpha } + i \epsilon_{ \alpha }{}^{ \beta } \ \phi_{ \beta } , \phi^{ \alpha } \to \phi^{ \alpha } - i \epsilon^{ \alpha }{}_{ \beta } \ \phi^{ \beta } . Using these transformations we find, for (Lorentz) scalar fields in the adjoint representation \Phi_{ \alpha }{}^{ \beta } \equiv \phi_{ \alpha } \phi^{ \beta } - ( 1 / n ) \delta_{ \alpha }^{ \beta } \ \phi^{ 2 }, the following transformation \Phi_{ \alpha }{}^{ \beta } \to \Phi_{ \alpha }{}^{ \beta } + i \epsilon_{ \alpha }{}^{ \eta } \ \Phi_{ \eta }{}^{ \beta } - i \epsilon^{ \beta }{}_{ \eta } \ \Phi_{ \alpha }{}^{ \eta } . The action of the covariant derivative on \phi_{ \alpha } is given by ( D_{ \mu } \phi )_{ \alpha } = \partial_{ \mu } \phi_{ \alpha } + i g ( \mathbb{ A }_{ \mu } )_{ \alpha }{}^{ \beta } \ \phi_{ \beta } . (i) Show that the gauge field transforms according to ( \mathbb{ A }_{ \mu } )_{ \alpha }{}^{ \beta } \to ( \mathbb{ A }_{ \mu } )_{ \alpha }{}^{ \beta } + i \epsilon_{ \alpha }{}^{ \eta } ( \mathbb{ A }_{ \mu } )_{ \eta }{}^{ \beta } - i \epsilon^{ \beta }{}_{ \eta } ( \mathbb{ A }_{ \mu } )_{ \alpha }{}^{ \eta } - \frac{ 1 }{ g } \partial_{ \mu } \epsilon_{ \alpha }{}^{ \beta } . (ii) Show that the action of the covariant derivative on (Lorentz) scalars in the adjoint representation is given by ( D_{ \mu } \Phi )_{ \alpha }{}^{ \beta } = \partial_{ \mu } \Phi_{ \alpha }{}^{ \beta } + i g \left( ( \mathbb{ A }_{ \mu } )_{ \alpha }{}^{ \eta } \Phi_{ \eta }{}^{ \beta } - ( \mathbb{ A }_{ \mu } )_{ \eta }{}^{ \beta } \Phi_{ \alpha }{}^{ \eta } \right) . (iii) Expand the matrices \mathbb{ A }_{ \mu } and \Phi in terms of the n \times n hermitian traceless matrices t^{ a } : ( \mathbb{ A }_{ \mu } )_{ \alpha }{}^{ \beta } = \frac{ 1 }{ 2 } A_{ \mu }^{ a } ( t^{ a } )_{ \alpha }{}^{ \beta } , \ \ \ \Phi_{ \alpha }{}^{ \beta } = \phi^{ b } ( t^{ b } )_{ \alpha }{}^{ \beta } , and show that D_{ \mu } \phi^{ a } = \partial_{ \mu } \phi^{ a } - \frac{ g }{ 2 } f^{ a b c } A_{ \mu }^{ b } \ \phi^{ c } . Notice that, like the Lorentz vectors A_{ \mu }^{ a }, the Lorentz scalars \phi^{ a } are components of a vector in ( n^{ 2 } - 1 )-dimensional vector space.
Sam