1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The energy of a particle is a function of its "state"

  1. Oct 1, 2006 #1

    quasar987

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member

    This is for a physics homework but the problem is essentially combinatorial in nature.

    There are 5 identical particles. Each can have an energy of 1,2,3 or 4.
    The energy of a particle is a function of its "state", and it is possible that to two different states correspond the same energy. As a matter of fact, we are told that there is 1 state of energy 1, 3 of energy 2, 4 of energy 3 and 5 of energy 4. If we call state of the system a particular combination of states that the particles are in, how many states of the system are there, provided that the total energy of the system (i.e. the sum of the individual energies of all five particles) is 12?

    Note that since the particles are identical, we do not make a distinction btw the subset of system states arising from the case "particle 1 has energy 1 and particle 2 has energy 3" and the subset arising when "particle 1 has energy 3 and partcile 2 has energy 1".

    It seems none of the tools of combinatorics are fit for this problem.
     
    Last edited: Oct 1, 2006
  2. jcsd
  3. Oct 1, 2006 #2

    quasar987

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member

    For the possible energy combination, I found

    (4,4,2,1,1)
    (4,3,3,1,1)
    (4,3,2,2,1)
    (4,2,2,2,2)
    (3,3,2,2,2)
    (3,3,3,2,1)

    Yeah, I'm pretty sure I didn't miss one.
     
  4. Oct 1, 2006 #3

    AKG

    User Avatar
    Science Advisor
    Homework Helper

    Okay, so you have 6 energy combinations, let's call them E1, ..., E6. If f(Ei) is the number of state combinations that give rise to an energy combination Ei, then the number of state combinations that are possible in total is [itex]\sum _{i=1} ^6 f(Ei)[/itex]. If we say E1 = (4,4,2,1,1), then f(E1) is clearly [itex]({{5}\choose{2}} + 5)({{3}\choose{1}})({{1}\choose{2}} + 1)[/itex], right?
     
  5. Oct 1, 2006 #4

    Hurkyl

    User Avatar
    Staff Emeritus
    Science Advisor
    Gold Member

    It feels like there should be a generating function approach to this problem, but I'm not seeing it off hand.
     
  6. Oct 1, 2006 #5

    quasar987

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member

    I would say f(E_1) is just 5x5x3x1x1, because we don't care which particle has which energy. See the "note" in the OP.
     
  7. Oct 1, 2006 #6

    StatusX

    User Avatar
    Homework Helper

    I would write out a 4-tuple representing the number of particles at each energy, ie, (a,b,c,d) corresponds to a system with a particles at E=1, b at E=2, and so on. Since there is more than 1 state with a given energy, each 4-tuple actually corresponds to several distinct system states. The number of states corresponding to (a,b,c,d) can be found as follows: first, there is only 1 way to put the a particles in the 1 E=1 state. Next, the number of ways to put b particles into the three E=2 states is equal to the number of ordered triples whose entries are non-negative integers summing to b, which is a relatively simple combinatorics problem. Continuing this way, get a general formula for the number of states represented by (a,b,c,d), then translate what you found in your second post into this language and add it up.
     
  8. Oct 1, 2006 #7

    quasar987

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member

    Oh right... just f(E_1) = 5x5x3x1x1 counts way too much states.
     
  9. Oct 1, 2006 #8

    0rthodontist

    User Avatar
    Science Advisor

    Well, there's always the easy, brute force approach:
    Code (Text):

    states = [(1, 1), (2, 2), (3, 2), (4, 2), (5, 3), (6, 3), (7, 3), (8, 3), (9, 4), (10, 4), (11, 4), (12, 4), (13, 4)]
    allsystem = [(x, y, z, t, u) | (x, a) <- states, (y, b) <- states, (z, c) <- states, (t, d) <- states, (u, e) <- states, a + b + c + d + e == 12 && x >= y && y >= z && z >= t && t >= u]

    f = [1..4]
    energies = [(a, b, c, d, e) | a<-f, b<-f, c<-f, d<-f, e<-f, a + b + c + d + e == 12, a>=b, b>=c, c>=d, d>=e]
    Here I associate each of the thirteen states with its energy level and put that in the variable states, and then find all ordered quintuplets of states such that the corresponding energy levels sum to 12, and each entry in the quintuplet is >= the next element so that I don't get duplicated system states. Finding the energies is done in a similar way.

    Then in the haskell interpreter I find that energies = [(3,3,2,2,2),(3,3,3,2,1),(4,2,2,2,2),(4,3,2,2,1),(4,3,3,1,1),(4,4,2,1,1)] (as you had done by hand) and that the length of allsystem is 450. Specifically the set of all system states is:
    Code (Text):

    [(5,5,2,2,2),(5,5,3,2,2),(5,5,3,3,2),(5,5,3,3,3),(5,5,4,2,2),(5,5,4,3,2),(5,5,4,
    3,3),(5,5,4,4,2),(5,5,4,4,3),(5,5,4,4,4),(5,5,5,2,1),(5,5,5,3,1),(5,5,5,4,1),(6,
    5,2,2,2),(6,5,3,2,2),(6,5,3,3,2),(6,5,3,3,3),(6,5,4,2,2),(6,5,4,3,2),(6,5,4,3,3)
    ,(6,5,4,4,2),(6,5,4,4,3),(6,5,4,4,4),(6,5,5,2,1),(6,5,5,3,1),(6,5,5,4,1),(6,6,2,
    2,2),(6,6,3,2,2),(6,6,3,3,2),(6,6,3,3,3),(6,6,4,2,2),(6,6,4,3,2),(6,6,4,3,3),(6,
    6,4,4,2),(6,6,4,4,3),(6,6,4,4,4),(6,6,5,2,1),(6,6,5,3,1),(6,6,5,4,1),(6,6,6,2,1)
    ,(6,6,6,3,1),(6,6,6,4,1),(7,5,2,2,2),(7,5,3,2,2),(7,5,3,3,2),(7,5,3,3,3),(7,5,4,
    2,2),(7,5,4,3,2),(7,5,4,3,3),(7,5,4,4,2),(7,5,4,4,3),(7,5,4,4,4),(7,5,5,2,1),(7,
    5,5,3,1),(7,5,5,4,1),(7,6,2,2,2),(7,6,3,2,2),(7,6,3,3,2),(7,6,3,3,3),(7,6,4,2,2)
    ,(7,6,4,3,2),(7,6,4,3,3),(7,6,4,4,2),(7,6,4,4,3),(7,6,4,4,4),(7,6,5,2,1),(7,6,5,
    3,1),(7,6,5,4,1),(7,6,6,2,1),(7,6,6,3,1),(7,6,6,4,1),(7,7,2,2,2),(7,7,3,2,2),(7,
    7,3,3,2),(7,7,3,3,3),(7,7,4,2,2),(7,7,4,3,2),(7,7,4,3,3),(7,7,4,4,2),(7,7,4,4,3)
    ,(7,7,4,4,4),(7,7,5,2,1),(7,7,5,3,1),(7,7,5,4,1),(7,7,6,2,1),(7,7,6,3,1),(7,7,6,
    4,1),(7,7,7,2,1),(7,7,7,3,1),(7,7,7,4,1),(8,5,2,2,2),(8,5,3,2,2),(8,5,3,3,2),(8,
    5,3,3,3),(8,5,4,2,2),(8,5,4,3,2),(8,5,4,3,3),(8,5,4,4,2),(8,5,4,4,3),(8,5,4,4,4)
    ,(8,5,5,2,1),(8,5,5,3,1),(8,5,5,4,1),(8,6,2,2,2),(8,6,3,2,2),(8,6,3,3,2),(8,6,3,
    3,3),(8,6,4,2,2),(8,6,4,3,2),(8,6,4,3,3),(8,6,4,4,2),(8,6,4,4,3),(8,6,4,4,4),(8,
    6,5,2,1),(8,6,5,3,1),(8,6,5,4,1),(8,6,6,2,1),(8,6,6,3,1),(8,6,6,4,1),(8,7,2,2,2)
    ,(8,7,3,2,2),(8,7,3,3,2),(8,7,3,3,3),(8,7,4,2,2),(8,7,4,3,2),(8,7,4,3,3),(8,7,4,
    4,2),(8,7,4,4,3),(8,7,4,4,4),(8,7,5,2,1),(8,7,5,3,1),(8,7,5,4,1),(8,7,6,2,1),(8,
    7,6,3,1),(8,7,6,4,1),(8,7,7,2,1),(8,7,7,3,1),(8,7,7,4,1),(8,8,2,2,2),(8,8,3,2,2)
    ,(8,8,3,3,2),(8,8,3,3,3),(8,8,4,2,2),(8,8,4,3,2),(8,8,4,3,3),(8,8,4,4,2),(8,8,4,
    4,3),(8,8,4,4,4),(8,8,5,2,1),(8,8,5,3,1),(8,8,5,4,1),(8,8,6,2,1),(8,8,6,3,1),(8,
    8,6,4,1),(8,8,7,2,1),(8,8,7,3,1),(8,8,7,4,1),(8,8,8,2,1),(8,8,8,3,1),(8,8,8,4,1)
    ,(9,2,2,2,2),(9,3,2,2,2),(9,3,3,2,2),(9,3,3,3,2),(9,3,3,3,3),(9,4,2,2,2),(9,4,3,
    2,2),(9,4,3,3,2),(9,4,3,3,3),(9,4,4,2,2),(9,4,4,3,2),(9,4,4,3,3),(9,4,4,4,2),(9,
    4,4,4,3),(9,4,4,4,4),(9,5,2,2,1),(9,5,3,2,1),(9,5,3,3,1),(9,5,4,2,1),(9,5,4,3,1)
    ,(9,5,4,4,1),(9,5,5,1,1),(9,6,2,2,1),(9,6,3,2,1),(9,6,3,3,1),(9,6,4,2,1),(9,6,4,
    3,1),(9,6,4,4,1),(9,6,5,1,1),(9,6,6,1,1),(9,7,2,2,1),(9,7,3,2,1),(9,7,3,3,1),(9,
    7,4,2,1),(9,7,4,3,1),(9,7,4,4,1),(9,7,5,1,1),(9,7,6,1,1),(9,7,7,1,1),(9,8,2,2,1)
    ,(9,8,3,2,1),(9,8,3,3,1),(9,8,4,2,1),(9,8,4,3,1),(9,8,4,4,1),(9,8,5,1,1),(9,8,6,
    1,1),(9,8,7,1,1),(9,8,8,1,1),(9,9,2,1,1),(9,9,3,1,1),(9,9,4,1,1),(10,2,2,2,2),(1
    0,3,2,2,2),(10,3,3,2,2),(10,3,3,3,2),(10,3,3,3,3),(10,4,2,2,2),(10,4,3,2,2),(10,
    4,3,3,2),(10,4,3,3,3),(10,4,4,2,2),(10,4,4,3,2),(10,4,4,3,3),(10,4,4,4,2),(10,4,
    4,4,3),(10,4,4,4,4),(10,5,2,2,1),(10,5,3,2,1),(10,5,3,3,1),(10,5,4,2,1),(10,5,4,
    3,1),(10,5,4,4,1),(10,5,5,1,1),(10,6,2,2,1),(10,6,3,2,1),(10,6,3,3,1),(10,6,4,2,
    1),(10,6,4,3,1),(10,6,4,4,1),(10,6,5,1,1),(10,6,6,1,1),(10,7,2,2,1),(10,7,3,2,1)
    ,(10,7,3,3,1),(10,7,4,2,1),(10,7,4,3,1),(10,7,4,4,1),(10,7,5,1,1),(10,7,6,1,1),(
    10,7,7,1,1),(10,8,2,2,1),(10,8,3,2,1),(10,8,3,3,1),(10,8,4,2,1),(10,8,4,3,1),(10
    ,8,4,4,1),(10,8,5,1,1),(10,8,6,1,1),(10,8,7,1,1),(10,8,8,1,1),(10,9,2,1,1),(10,9
    ,3,1,1),(10,9,4,1,1),(10,10,2,1,1),(10,10,3,1,1),(10,10,4,1,1),(11,2,2,2,2),(11,
    3,2,2,2),(11,3,3,2,2),(11,3,3,3,2),(11,3,3,3,3),(11,4,2,2,2),(11,4,3,2,2),(11,4,
    3,3,2),(11,4,3,3,3),(11,4,4,2,2),(11,4,4,3,2),(11,4,4,3,3),(11,4,4,4,2),(11,4,4,
    4,3),(11,4,4,4,4),(11,5,2,2,1),(11,5,3,2,1),(11,5,3,3,1),(11,5,4,2,1),(11,5,4,3,
    1),(11,5,4,4,1),(11,5,5,1,1),(11,6,2,2,1),(11,6,3,2,1),(11,6,3,3,1),(11,6,4,2,1)
    ,(11,6,4,3,1),(11,6,4,4,1),(11,6,5,1,1),(11,6,6,1,1),(11,7,2,2,1),(11,7,3,2,1),(
    11,7,3,3,1),(11,7,4,2,1),(11,7,4,3,1),(11,7,4,4,1),(11,7,5,1,1),(11,7,6,1,1),(11
    ,7,7,1,1),(11,8,2,2,1),(11,8,3,2,1),(11,8,3,3,1),(11,8,4,2,1),(11,8,4,3,1),(11,8
    ,4,4,1),(11,8,5,1,1),(11,8,6,1,1),(11,8,7,1,1),(11,8,8,1,1),(11,9,2,1,1),(11,9,3
    ,1,1),(11,9,4,1,1),(11,10,2,1,1),(11,10,3,1,1),(11,10,4,1,1),(11,11,2,1,1),(11,1
    1,3,1,1),(11,11,4,1,1),(12,2,2,2,2),(12,3,2,2,2),(12,3,3,2,2),(12,3,3,3,2),(12,3
    ,3,3,3),(12,4,2,2,2),(12,4,3,2,2),(12,4,3,3,2),(12,4,3,3,3),(12,4,4,2,2),(12,4,4
    ,3,2),(12,4,4,3,3),(12,4,4,4,2),(12,4,4,4,3),(12,4,4,4,4),(12,5,2,2,1),(12,5,3,2
    ,1),(12,5,3,3,1),(12,5,4,2,1),(12,5,4,3,1),(12,5,4,4,1),(12,5,5,1,1),(12,6,2,2,1
    ),(12,6,3,2,1),(12,6,3,3,1),(12,6,4,2,1),(12,6,4,3,1),(12,6,4,4,1),(12,6,5,1,1),
    (12,6,6,1,1),(12,7,2,2,1),(12,7,3,2,1),(12,7,3,3,1),(12,7,4,2,1),(12,7,4,3,1),(1
    2,7,4,4,1),(12,7,5,1,1),(12,7,6,1,1),(12,7,7,1,1),(12,8,2,2,1),(12,8,3,2,1),(12,
    8,3,3,1),(12,8,4,2,1),(12,8,4,3,1),(12,8,4,4,1),(12,8,5,1,1),(12,8,6,1,1),(12,8,
    7,1,1),(12,8,8,1,1),(12,9,2,1,1),(12,9,3,1,1),(12,9,4,1,1),(12,10,2,1,1),(12,10,
    3,1,1),(12,10,4,1,1),(12,11,2,1,1),(12,11,3,1,1),(12,11,4,1,1),(12,12,2,1,1),(12
    ,12,3,1,1),(12,12,4,1,1),(13,2,2,2,2),(13,3,2,2,2),(13,3,3,2,2),(13,3,3,3,2),(13
    ,3,3,3,3),(13,4,2,2,2),(13,4,3,2,2),(13,4,3,3,2),(13,4,3,3,3),(13,4,4,2,2),(13,4
    ,4,3,2),(13,4,4,3,3),(13,4,4,4,2),(13,4,4,4,3),(13,4,4,4,4),(13,5,2,2,1),(13,5,3
    ,2,1),(13,5,3,3,1),(13,5,4,2,1),(13,5,4,3,1),(13,5,4,4,1),(13,5,5,1,1),(13,6,2,2
    ,1),(13,6,3,2,1),(13,6,3,3,1),(13,6,4,2,1),(13,6,4,3,1),(13,6,4,4,1),(13,6,5,1,1
    ),(13,6,6,1,1),(13,7,2,2,1),(13,7,3,2,1),(13,7,3,3,1),(13,7,4,2,1),(13,7,4,3,1),
    (13,7,4,4,1),(13,7,5,1,1),(13,7,6,1,1),(13,7,7,1,1),(13,8,2,2,1),(13,8,3,2,1),(1
    3,8,3,3,1),(13,8,4,2,1),(13,8,4,3,1),(13,8,4,4,1),(13,8,5,1,1),(13,8,6,1,1),(13,
    8,7,1,1),(13,8,8,1,1),(13,9,2,1,1),(13,9,3,1,1),(13,9,4,1,1),(13,10,2,1,1),(13,1
    0,3,1,1),(13,10,4,1,1),(13,11,2,1,1),(13,11,3,1,1),(13,11,4,1,1),(13,12,2,1,1),(
    13,12,3,1,1),(13,12,4,1,1),(13,13,2,1,1),(13,13,3,1,1),(13,13,4,1,1)]
     
    Last edited: Oct 1, 2006
  10. Oct 1, 2006 #9

    quasar987

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member

    Amazing. And 450 is right.
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?



Similar Discussions: The energy of a particle is a function of its "state"
Loading...