The equations of variable mass systems

Click For Summary
SUMMARY

The discussion focuses on the formal derivation of equations governing variable mass systems, specifically through the lens of continuous media equations. The local conservation of mass is expressed as $$\rho_t + \mathrm{div}(\rho \boldsymbol{v}) = 0$$, while the linear momentum balance is articulated as $$\boldsymbol{\dot Q} = \boldsymbol{G} + \boldsymbol{P} + \boldsymbol{R}$$. The author presents a theorem proving the linear momentum balance for a volume filled with continuous media, and also explores the angular momentum balance, indicating the equations' dependence on the stress tensor and velocity fields. The discussion invites criticism and verification of the presented proofs.

PREREQUISITES
  • Understanding of continuous media mechanics
  • Familiarity with vector calculus and tensor analysis
  • Knowledge of conservation laws in physics
  • Proficiency in mathematical notation and proofs
NEXT STEPS
  • Study the derivation of the Navier-Stokes equations for fluid dynamics
  • Explore the application of the divergence theorem in continuum mechanics
  • Research the role of stress tensors in material deformation
  • Investigate angular momentum conservation in variable mass systems
USEFUL FOR

Physicists, mechanical engineers, and applied mathematicians interested in fluid dynamics, continuum mechanics, and the mathematical foundations of variable mass systems.

wrobel
Science Advisor
Insights Author
Messages
1,255
Reaction score
1,058
The equations of variable mass systems are usually deduced from some very informal argument. It is so at least for the books I know.

So I tried to construct a formal proof based on the continuous media equations.

Criticism, remarks etc are welcomed.

Let ##D\subset \mathbb{R}^q## be an open and bounded domain with ##C^1-##smooth boundary ##\partial D##. The cases ##q=1,2,3## are physically reasonable.

The space ##\mathbb{R}^q## is endowed with an inertial frame of reference ##Ox^1,\ldots,x^q##, where ## x=(x^1,\ldots,x^q)## are the standard Cartesian coordinates:
$$\boldsymbol{x}=x^i\boldsymbol{e}_i\in \mathbb{R}^q.$$ A theorem we formulate below has an invariant form but we use the Cartesian coordinates just for convenience.

Let ##(\cdot,\cdot)## denote the standard inner product in ##\mathbb{R}^q##.

Note also that in the Cartesian frame there is no need to distinguish co- and contravariant components of tensors.

Let $$\boldsymbol w(t,x)=w^i(t,x)\boldsymbol e_i,\quad w^i\in C^1(\mathbb{R}^{q+1})$$ stand for a vector field in ##\mathbb{R}^q## and ##g^t_{t_0}(x)## be its flow:
$$\frac{d}{dt}g^t_{t_0}(x)=\boldsymbol w(t,g^t_{t_0}(x)),\quad g^{t_0}_{t_0}(x)=x.$$ We assume that ##g^t_{t_0}(x)## is defined for all real ##t,t_0## and for all ##x\in \mathbb{R}^q##.
Introduce a notation $$D(t)=g^t_{t_0}(D).$$
Loosely speaking ##\boldsymbol w## is a velocity of the volume ##D(t)##.

Assume that the domain ##D(t)## is filled with a continuous media with a mass density ##\rho(t,x)## and a flow velocity field ##\boldsymbol{v}(t,x)=v^i(t,x)\boldsymbol{e}_i##;
$$v^i,\rho\in C^1(\overline\Omega),\quad \Omega=\{(t,x)\mid x\in D(t),\quad t\in\mathbb{R}\}\subset\mathbb{R}^{q+1}.$$
The local conservation of mass equation is
$$\rho_t+\mathrm{div}(\rho\boldsymbol{v})=0$$ or
$$
\rho_t+\frac{\partial (\rho v^i)}{\partial x^i}=0.\qquad(1)$$
Let $$\boldsymbol{F}(t,x)=F^i(t,x)\boldsymbol{e}_i,\quad F^i\in C(\overline\Omega)$$ stand for a force per unit mass. So that the whole matter in ##D(t)## experiences a net force $$\boldsymbol{G}(t)=\int_{D(t)}\rho(t,x)\boldsymbol{F}(t,x)dV,$$ where ##dV## is the volume element.
We denote the stress tensor by ##p^{ij}(t,x)##. The boundary ##\partial D(t)## experiences the following external contact net force
$$\boldsymbol{P}(t)=\int_{\partial D(t)}\boldsymbol{p}_n dS,\quad \boldsymbol{p}_n=p^{ij}n_j\boldsymbol{e}_i,$$
where ##\boldsymbol{n}=n^i\boldsymbol{e}_i## is the outer unit normal to ##\partial D(t)##; ##dS## is the area element of the surface;
$$p^{ij}\in C^1(\overline\Omega).$$
The local equation of linear momentum balance is
$$
\rho\Big(v^k_t+\frac{\partial v^k}{\partial x^i}v^i\Big)=\rho F^k+\frac{\partial p^{kj}}{\partial x^j}.\qquad (2)$$
Let
$$\boldsymbol{Q}(t)=\int_{D(t)}\boldsymbol{v}(t,x)\rho(t,x) dV$$stand for the linear momentum of ##D(t)##.

THEOREM. The equation of linear momentum balance for the volume ##D(t)## is as follows
$${\boldsymbol{\dot Q}}=\boldsymbol{G}+\boldsymbol{P}+\boldsymbol{R},$$where
$$\boldsymbol{R}=-\int_{\partial D(t)}\boldsymbol{v}(\boldsymbol{v}-\boldsymbol{w},\boldsymbol{n})\rho dS.$$PROOF. By the well-known theorem from the integral calculus and due to (2) it follows that
$$\frac{d}{dt} Q^k=\int_{D(t)}\big( v_t^k\rho+ v^k\rho_t+\mathrm{div}\,(\rho v^k\boldsymbol w) \big)dV$$
$$=\int_{D(t)}\Big[ \Big(F^k-\frac{\partial v^k}{\partial x^j}v^j\Big)\rho+\frac{\partial p^{kl}}{\partial x^l}+ v^k\rho_t\Big] dV$$
$$+\int_{D(t)}\mathrm{div}\,(\rho v^k\boldsymbol w)dV.$$
Integration by parts gives
$$\int_{D(t)}\frac{\partial v^k}{\partial x^j}v^j \rho dV=\int_{\partial D(t)} v^kv^j n_j\rho ds-\int_{D(t)} v^k\mathrm{div}(\rho\boldsymbol{v})dV$$
$$\int_{D(t)}\frac{\partial p^{kl}}{\partial x^l} dV=\int_{\partial D(t)} p^{kl}n_ldS,$$
$$
\int_{D(t)}\mathrm{div}\,(\rho v^k\boldsymbol w)dV=\int_{\partial D(t)}\rho v^kw^jn_jdS.$$
To finish the proof it remains to employ (1).

The Theorem is proved.

Other theorems (the angular momentum balance and the energy balance) can be deduced by the same way.
 
  • Like
  • Informative
Likes   Reactions: vanhees71, ergospherical and Delta2
Physics news on Phys.org
As an exercise I tried to determine the equation of angular momentum balance; I wondered if my working looks correct to you? The local equation of angular momentum balance is ##p^{ij} = p^{ji}##. Let\begin{align*}
\boldsymbol{L}(t) &= \int_{D(t)} \boldsymbol{r} \times \boldsymbol{v}(\boldsymbol{r},t) \rho(\boldsymbol{r},t) dV \\

L^i(t) &= \int_{D(t)} \epsilon_{ijk} x^j v^k \rho dV
\end{align*}and also let\begin{align*}
\boldsymbol{M}(t) &= \int_{D(t)} \boldsymbol{r} \times \boldsymbol{F}(\boldsymbol{r},t) \rho(\boldsymbol{r},t)dV \\

M^i(t) &= \int_{D(t)} \epsilon_{ijk} x^j F^k \rho dV
\end{align*}Take the time derivative of ##L^i##, using the local momentum balance equation as well as ##\epsilon_{ijk} v^j v^k = 0##,\begin{align*}

\dfrac{d}{dt} L^i &= \int_{D(t)} \epsilon_{ijk} \left( v^j v^k \rho + x^j v^k_t \rho + x^j v^k \rho_t + \mathrm{div}(\rho x^j v^k \boldsymbol{w}) \right) dV \\

&= \int_{D(t)} \epsilon_{ijk} \left( x^j \left[ \left( F^k-\frac{\partial v^k}{\partial x^l}v^l\right)\rho+\frac{\partial p^{kl}}{\partial x^l} \right] + x^j v^k \rho_t \right) dV \\

&\hspace{35pt} + \int_{D(t)} \epsilon_{ijk} \mathrm{div}(\rho x^j v^k \boldsymbol{w}) dV \\ \\

&= \int_{D(t)} \epsilon_{ijk} \left( - x^j \frac{\partial v^k}{\partial x^l}v^l \rho + x^j\frac{\partial p^{kl}}{\partial x^l} + x^j v^k \rho_t \right) dV + M^i \\

&\hspace{35pt} + \int_{D(t)} \epsilon_{ijk} \mathrm{div}(\rho x^j v^k \boldsymbol{w}) dV

\end{align*}Using partial integration, and the relation ##\rho_t + \mathrm{div}(\rho \boldsymbol{v})= 0##, we may write\begin{align*}
\int_{D(t)} \epsilon_{ijk} x^j\frac{\partial v^k}{\partial x^l}v^l \rho dV - \int_{\partial D(t)} \epsilon_{ijk} x^j v^kv^l n_l\rho ds &=-\int_{D(t)} \epsilon_{ijk} v^k \dfrac{\partial}{\partial x^l} ( x^j v^l \rho)dV \\

&= -\int_{D(t)} \epsilon_{ijk} v^k (v^j \rho + x^j \mathrm{div}(\rho\boldsymbol{v}))dV \\

&= -\int_{D(t)} \epsilon_{ijk} x^j v^k \mathrm{div}(\rho\boldsymbol{v})dV \\

&= + \int_{D(t)} \epsilon_{ijk} x^j v^k \rho_t dV

\end{align*}as well as\begin{align*}
\int_{D(t)} \epsilon_{ijk} x^j \dfrac{\partial p^{kl}}{\partial x^l} dV &= \int_{\partial D(t)} \epsilon_{ijk} x^j p^{kl} n_l ds - \int_{D(t)} \epsilon_{ijk} p^{kj} dV \\

&= \int_{\partial D(t)} \epsilon_{ijk} x^j p^{kl} n_l ds
\end{align*}where in the final equality the symmetry of ##p^{ij} = p^{ji}## was used. The time derivative of ##L^i## can hence be rewritten as\begin{align*}
\dfrac{d}{dt} L^i &=
\int_{\partial D(t)} \epsilon_{ijk} x^j (p^{kl} - v^k v^l \rho) n_l ds + M^i \\

&\hspace{35pt} + \int_{D(t)} \epsilon_{ijk} \mathrm{div}(\rho x^j v^k \boldsymbol{w}) dV
\end{align*}Does this equation look correct? It can probably be simplified further.
 
Last edited:
I think you just missed ##\rho## and the formulas must be as follows
Screenshot from 2021-06-24 16-27-32.png
 
  • Like
Likes   Reactions: vanhees71 and ergospherical
Thanks! I missed out a ##\rho## when writing my final equation [it is now corrected]. Then\begin{align*}

\dfrac{d}{dt} L^i &=

\int_{\partial D(t)} \epsilon_{ijk} x^j (p^{kl} - v^k v^l \rho) n_l ds + M^i \\
&\hspace{35pt} + \int_{D(t)} \epsilon_{ijk} \mathrm{div}(\rho x^j v^k \boldsymbol{w}) dV \\ \\&=
\int_{\partial D(t)} \epsilon_{ijk} x^j p^{kl} n_l ds + M^i \\
&\hspace{35pt} + \int_{D(t)} \epsilon_{ijk} \rho x^j v^k (w^l - v^l) n_l ds

\end{align*}Multiplying by ##\boldsymbol{e}_i## yields\begin{align*}
\dfrac{d}{dt} \boldsymbol{L} = \int_{\partial D(t)} \boldsymbol{r} \times \boldsymbol{p}_n ds + \boldsymbol{M} + \int_{\partial D(t)} \boldsymbol{r} \times \boldsymbol{v} (\boldsymbol{w} - \boldsymbol{v}, \boldsymbol{n}) ds
\end{align*}where ##(\boldsymbol{p}_n)^i = p^{ij} n_j##.
 
  • Like
Likes   Reactions: vanhees71

Similar threads

  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 27 ·
Replies
27
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 17 ·
Replies
17
Views
2K