Id like to know if the following argument is valid.(adsbygoogle = window.adsbygoogle || []).push({});

Take an arbitrary function [tex]f(x)[/tex]. [tex]f(x)dx[/tex] can be thought of an infinitesimal area of a certain form (I emphasise this because I use it later in the argument) determined by the form of the function [tex]f(x)[/tex]. Lets denote its integral by [tex]Y[/tex].

[tex]\int{ f(x)} dx = Y[/tex]

Now, I argue that an infinitesimal of the whole formed by summing up infinitesimals of a certain form must be an infinitesimal of the same form. ie,

[tex] d\int{ f(x)} dx = f(x)dx[/tex]

Then the fundamental theorem of calculus follows.

[tex] f(x) dx = dY [/tex]

[tex] f(x) = \frac{dY}{dx} [/tex]

[tex] f(x) = \frac{d}{dx}\int{ f(x)} dx[/tex]

If this argument is valid. Can it be made rigorous?

**Physics Forums - The Fusion of Science and Community**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# The Fundamental Theorem of Calculus

Loading...

Similar Threads for Fundamental Theorem Calculus | Date |
---|---|

B Some help understanding integrals and calculus in general | May 22, 2017 |

I Visual interpretation of Fundamental Theorem of Calculus | Dec 27, 2016 |

Fundamental Theorem of Calculus: Part One | Dec 3, 2015 |

Fundamental theorem of calculus | Jun 22, 2015 |

Fundamental theorem of calculus for double integral | Jun 22, 2015 |

**Physics Forums - The Fusion of Science and Community**