- #1

- 621

- 0

## Main Question or Discussion Point

The derivation of the Lorentz transformations is based on the homogeneity[of space and time] and the isotropy of space.

Could one derive the same transformations wrt space which is not homogeneous or[not] isotropic?

You may consider a few chunks of dielectric strewn here and there. I am assuming for the sake of simplicity that they are at rest in some inertial frame. Such a distribution is not possible without introducing gravitational effects. Running of clocks is affected by gravity.Does the anisotropy of space itself have any effect on them[running of clocks]?

[Incidentally isotropy of space is connected with clocks in the derivation of the Lorentz transformation.Clocks placed symmetrically wrt the x-axis[and lying on the y-z plane as example] should record the same time. Otherwise isotropy of spece gets violated.This idea is commonly used in the derivations.You may consider the one given in "Introduction to Relativity" by Robert Resnick ]

Again the Lorentz transformations are embedded in [present in] Maxwell's equations. But they are the vacuum equations---homogeneity of space[and time] and isotropy are in due consideration.

The Lorentz Transformations are of course correct--only in the context of the homogeneity[of space and time] and isotropy of space. They are extremely useful, like frctionless planes we studied in our childhood days.Frictionless planes helped us in understanding mechanics--but it is extremely difficult to realize them in practice.

Could one derive the same transformations wrt space which is not homogeneous or[not] isotropic?

You may consider a few chunks of dielectric strewn here and there. I am assuming for the sake of simplicity that they are at rest in some inertial frame. Such a distribution is not possible without introducing gravitational effects. Running of clocks is affected by gravity.Does the anisotropy of space itself have any effect on them[running of clocks]?

[Incidentally isotropy of space is connected with clocks in the derivation of the Lorentz transformation.Clocks placed symmetrically wrt the x-axis[and lying on the y-z plane as example] should record the same time. Otherwise isotropy of spece gets violated.This idea is commonly used in the derivations.You may consider the one given in "Introduction to Relativity" by Robert Resnick ]

Again the Lorentz transformations are embedded in [present in] Maxwell's equations. But they are the vacuum equations---homogeneity of space[and time] and isotropy are in due consideration.

The Lorentz Transformations are of course correct--only in the context of the homogeneity[of space and time] and isotropy of space. They are extremely useful, like frctionless planes we studied in our childhood days.Frictionless planes helped us in understanding mechanics--but it is extremely difficult to realize them in practice.

Last edited: