The Pressure-Entropy Relationship for a Photon Gas

Click For Summary
The discussion focuses on deriving the pressure of a photon gas from its internal energy using thermodynamic principles. The first law of thermodynamics is applied, showing that the pressure is related to the partial derivative of internal energy with respect to volume while keeping entropy constant. The conversation highlights that for a photon gas, the number of photons is not conserved, eliminating the need for a chemical potential. The derived relationships indicate that the internal energy, entropy, and pressure can be expressed in terms of temperature and volume. Ultimately, the results align with expectations from kinetic theory, confirming the derived formulas for pressure and entropy.
Bookworm092
Messages
2
Reaction score
2
Homework Statement
Given the internal energy U of a photon gas, one can take its partial derivative with respect to volume V to get the pressure P (or rather its negative). But if U is calculated by integrating Planck's distribution (see attached), then the result will not be one third of U/V, a result from kinetic theory. Please explain what has gone wrong.
Relevant Equations
See attached.
This is from Problem 7.45 of Thermal Physics by Daniel Schroeder.
 

Attachments

  • Stefan-Boltzmann law.png
    Stefan-Boltzmann law.png
    4.9 KB · Views: 365
Physics news on Phys.org
Bookworm092 said:
Homework Statement:: Given the internal energy U of a photon gas, one can take its partial derivative with respect to volume V to get the pressure P (or rather its negative).
When taking a partial derivative, you need to specify what other variables are kept constant.

From the first law ##dU = TdS - PdV##, you can see that ##-P = \large \left( \frac{\partial U}{\partial V}\right)_S \;##.
 
  • Like
Likes Bookworm092, vanhees71 and Delta2
TSny said:
When taking a partial derivative, you need to specify what other variables are kept constant.

From the first law ##dU = TdS - PdV##, you can see that ##-P = \large \left( \frac{\partial U}{\partial V}\right)_S \;##.
Thank you for your response. I managed to crack the problem. Both ##S## and ##N## are to be kept constant. But since ##T## is not constant, I can make use of another equation to express T in terms of something else. I had already derived an expression for ##S##. The answer comes out as expected from kinetic theory.
 
You cannot keep ##N## constant and varying ##T##. Since "photon number" is not a conserved quantity there's no chemical potential either (despite the fact that photons are massless bosons, so that even if you could introduce a chemical potential it must be ##0## anyway).

We have given
$$U=\sigma T^4 V.$$
The "natural independent variables" for ##U## are, however ##S## and ##V## and
$$\mathrm{d}U = T \mathrm{d} S-p \mathrm{d} V.$$
From this you have
$$(\partial_S U)_V=T=\left (\frac{U}{\sigma V} \right)^{1/4}.$$
This you can integrate (using Nernst's Law that at ##T=0##, where ##U=0## also ##S=0##) to
$$U^{3/4}=\frac{3}{4} (\sigma V)^{-1/4} S \qquad (*)$$
or
$$U=\left (\frac{3}{4} \right)^{4/3} (\sigma V)^{-1/3} S^{4/3},$$
from which
$$p=-(\partial_V U)_S=\frac{U}{3 V}.$$
From (*) you also get the more convenient formula
$$S=\frac{4}{3} \sigma V T^3=\frac{4 U}{3T}.$$
 
  • Like
Likes hutchphd and TSny
So is there some elegant way to do this or am I just supposed to follow my nose and sub the Taylor expansions for terms in the two boost matrices under the assumption ##v,w\ll 1##, then do three ugly matrix multiplications and get some horrifying kludge for ##R## and show that the product of ##R## and its transpose is the identity matrix with det(R)=1? Without loss of generality I made ##\mathbf{v}## point along the x-axis and since ##\mathbf{v}\cdot\mathbf{w} = 0## I set ##w_1 = 0## to...

Similar threads

Replies
1
Views
2K
Replies
6
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 109 ·
4
Replies
109
Views
7K
  • · Replies 60 ·
3
Replies
60
Views
9K
Replies
10
Views
2K