High School Principle of Relativity: Classical Physics Example

Click For Summary
SUMMARY

The principle of relativity asserts that the laws of physics are consistent across all inertial reference frames, a concept first articulated by Galileo and foundational to Newtonian mechanics. In classical physics, specifically Newtonian physics, the Galilean transformation governs the relationship between different inertial frames. In contrast, special relativity introduces the Lorentz transformation, which incorporates the invariant speed of light as a limiting speed. This distinction highlights the evolution from classical to modern physics, where Einstein's postulates resolve discrepancies between Maxwell's equations and Newton's laws.

PREREQUISITES
  • Understanding of Newtonian mechanics and its principles
  • Familiarity with Galilean transformations
  • Knowledge of special relativity and Lorentz transformations
  • Basic comprehension of electromagnetic wave behavior
NEXT STEPS
  • Study the implications of Galilean transformations in classical mechanics
  • Explore the derivation and applications of Lorentz transformations
  • Investigate the relationship between Maxwell's equations and special relativity
  • Examine the concept of inertial frames and their significance in physics
USEFUL FOR

Students of physics, educators in classical and modern physics, and anyone interested in the foundational concepts of relativity and its impact on scientific understanding.

abdossamad2003
Messages
68
Reaction score
4
hi everyone
"The principle of relativity: The laws of physics are the same in all inertial reference frames."
Is in classical physics The laws of physics aren't the same in all inertial reference frames!? Give an example in classical physics

Thanks
 
Physics news on Phys.org
The principle of relativity holds in all systems of physics since Galileo. Aristotle would have disagreed with it, arguing that (in modern terms) the rest frame of the Earth's surface is special in some sense.

Einstein probably felt the need to state the principle explicitly since dropping it was one approach you could consider to resolve the mismatch between Maxwell and Newton. Relativity, of course, resolves the mismatch without abandoning the principle of relativity.
 
  • Like
Likes topsquark and russ_watters
abdossamad2003 said:
Is in classical physics The laws of physics aren't the same in all inertial reference frames!?
No. The principle of relativity in this form was actually first enunciated by Galileo, and Newtonian mechanics is bulit on it. The difference between Newtonian mechanics and special relativity is the specific form of the transformation between different inertial frames: in Newtonian mechanics it is the Galilean transformation, in SR it is the Lorentz transformation.
 
First of all, I guess with "classical physics" you mean "Newtonian physics". Of course, in Newtonian physics the special principle of relativity must also hold. In both Newtonian physics and special relativistic physics thus Newton's 1st Law is valid, i.e., there exists an "inertial frame of reference", in which a point mass moves with constant velocity, if it's not interacting with anything.

The difference comes with Einstein's additional postulate for special relativity, i.e., that the phase velocity of electromagnetic waves in a vacuum (in short "the speed of light") is independent of the relative motion between source and detector.

Together with the additional assumptions about the symmetries of space and time you find out that you either get the Galilei transformations between two inertial reference frames,
$$t'=t, \quad \vec{x}'=\vec{x}-\vec{v} t, \quad \vec{v}=\text{const}$$
or the Lorentz transformations (making the direction of the relative velocity that in the ##x##-direction),
$$c t'=\gamma (c t-\beta x), \quad \beta=v/c, \quad \gamma=1/\sqrt{1-\beta^2},$$
$$x' = \gamma (x-\beta c t).$$
The Galilei transformations of course belong to Newtonian and the Lorentz transformations to special relativistic physics, and in special relativity, the speed of light, ##c##, is a "limiting speed", i.e., nothing can move faster than the speed of light within an inertial frame of reference. There's no such limiting speed in Newtonian physics, of course.
 
In an inertial frame of reference (IFR), there are two fixed points, A and B, which share an entangled state $$ \frac{1}{\sqrt{2}}(|0>_A|1>_B+|1>_A|0>_B) $$ At point A, a measurement is made. The state then collapses to $$ |a>_A|b>_B, \{a,b\}=\{0,1\} $$ We assume that A has the state ##|a>_A## and B has ##|b>_B## simultaneously, i.e., when their synchronized clocks both read time T However, in other inertial frames, due to the relativity of simultaneity, the moment when B has ##|b>_B##...

Similar threads

  • · Replies 144 ·
5
Replies
144
Views
9K
  • · Replies 53 ·
2
Replies
53
Views
5K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 29 ·
Replies
29
Views
3K
  • · Replies 44 ·
2
Replies
44
Views
6K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K