The question: What are the components of the gab metric in Kaluza-Klein theory?

  • Thread starter Thread starter shounakbhatta
  • Start date Start date
  • Tags Tags
    Components Metric
shounakbhatta
Messages
287
Reaction score
1
Hello,

I am trying to understand Kaluza Klein theory on the five dimensional unification. It was mentioned over there:

" Of the 15 components of gαβ, five had to get a new physical interpretation, i.e. gα5 and g55; the components gik, i,k = 1,...,4, were to describe the gravitational field as before; Kaluza took gi5 proportional to the electromagnetic vector potential Ai"

My question is that gαβ, if I take the metric tensor of general relativity has 16 components (g00...g33). Can anybody please clarify?


Thanks
 
Physics news on Phys.org
Due to symmetry only 10 of the 16 components are independent. Similarly, although adding a 5th dimension gives 9 more components, only 5 are independent.
 
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
ASSUMPTIONS 1. Two identical clocks A and B in the same inertial frame are stationary relative to each other a fixed distance L apart. Time passes at the same rate for both. 2. Both clocks are able to send/receive light signals and to write/read the send/receive times into signals. 3. The speed of light is anisotropic. METHOD 1. At time t[A1] and time t[B1], clock A sends a light signal to clock B. The clock B time is unknown to A. 2. Clock B receives the signal from A at time t[B2] and...
From $$0 = \delta(g^{\alpha\mu}g_{\mu\nu}) = g^{\alpha\mu} \delta g_{\mu\nu} + g_{\mu\nu} \delta g^{\alpha\mu}$$ we have $$g^{\alpha\mu} \delta g_{\mu\nu} = -g_{\mu\nu} \delta g^{\alpha\mu} \,\, . $$ Multiply both sides by ##g_{\alpha\beta}## to get $$\delta g_{\beta\nu} = -g_{\alpha\beta} g_{\mu\nu} \delta g^{\alpha\mu} \qquad(*)$$ (This is Dirac's eq. (26.9) in "GTR".) On the other hand, the variation ##\delta g^{\alpha\mu} = \bar{g}^{\alpha\mu} - g^{\alpha\mu}## should be a tensor...
Back
Top