The relationship between F=ma and E=mc2

Starlover
Messages
15
Reaction score
0
I'm wondering about the relationship between F=ma and E=mc2. Is it simply that, at relativistic speeds, E=mc2 replaces F=ma? (much like D = v x t is replaced by the Lorentz Contraction at relativistic speeds)
 
Physics news on Phys.org
##E=mc^2## is a special case, only valid when an object is not moving, of ##E=\gamma mc^2##. If you Taylor expand the ##\gamma##, the first term is ##mc^2## and the second is Newtonian kinetic energy, ##mv^2/2##.

In relativity, ##F=ma## is replaced by a rather more complex expression, which varies between ##F=\gamma ma## and ##F=\gamma^3ma## depending on the angle between the force being applied and the velocity of the object. Note that accelerations are not necessarily parallel to forces.

In other words, the two expressions you asked about don't have a lot in common except that they are both parts of kinematic theories. One describes an energy term that does not change, which is how it got overlooked in the development of Newtonian relativity. The other relates force and acceleration.
 
  • Like
Likes bcrowell, jbriggs444 and Doc Al
Thank you, Ibix! I see I was way off. I'm glad I asked! :)
 
The Newtonian equation, F=ma is replaced in relativity (relativistic dynamics) by F = dp/dt, where p is momentum. So force is the rate of change of momentum with respect to time.

F=dp/dt is valid in Newtonian mechanics as well, so it's valid in both relativistic and Newtonian mechanics.

To anyone who remembers their calculus, this should be a sufficient explanation. I suspect that many PF readers who ask this question don't remember (or haven't yet had) calculus, so the explanation doesn't always seem to "get through" unfortunately..

I'll go through the math in more detail, but understanding the technical points does require one to know/remember their calculus - at least the way I am going to present it. If we start with p = m*v, which is universally true both in relativistic and Newtonian mechanics, we next apply the chain rule for derivatives to simplify the expression. Thus we write dp/dt = (dm/dt)*v + m (dv/dt). When m is constant, dm/dt is zero, the first term disappears, and dp/dt reduces to f = m dv/dt = ma. In relativistic dynamics, p = ##\gamma m v##, so ##dp/dt = (d \gamma/dt) m v + \gamma (dm/dt) v + \gamma m (dv/dt)##, where ##\gamma = 1/\sqrt{1-(v/c)^2)}##
 
  • Like
Likes fresh_42
Thank you, Pervect. It was kind of you to take all this time!
 
pervect said:
The Newtonian equation, F=ma is replaced in relativity (relativistic dynamics) by F = dp/dt, where p is momentum.

F = dp/dt actually is the Newtonian equation. F = m·a comes from Euler.
 
  • Like
Likes nrqed
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...
Back
Top