The time-dependence of the expectation values of spin operators

Rayan
Messages
17
Reaction score
1
Homework Statement
Assume a spin s= 1/2 is subjected to an external magnetic field B. The Hamiltonian is then given by H, and that at t= 0, the spin of the particle is in the eigenstate of the S_x operator with the eigenvalue:
Relevant Equations
$$ \hat{H} = -\frac{eB}{mc} \hat{S}_z = w\hat{S_z} $$
$$ \hat{S}_x|\psi (t= 0)⟩= \frac{\hbar}{2}|\psi(t= 0)⟩$$
So first I derived the expressions for the dynamics of the spin operators and got:
$$ \frac{d\hat{S}_y}{dt} = w\hat{S}_x^H $$
$$ \frac{d\hat{S}_x}{dt} = w\hat{S}_y^H $$
$$ \frac{d\hat{S}_z}{dt} = 0 $$

Now I want to calculate the time-dependence of the expectation values of the spin operators, To do that I used Ehrenfest theorem (for an arbitrary $S_i$):

$$ \frac{d}{dt} ⟨ S_i ⟩_H = \frac{1}{i\hbar} ⟨ [ \hat{S}_i , \hat{H} ] ⟩ + ⟨ \frac{\partial S_i }{dt} ⟩ $$

Starting with the first term:
$$ ⟨ [ \hat{S}_i , \hat{H} ] ⟩ = ⟨ {S}_i \hat{H} ⟩ - ⟨ \hat{H} \hat{S}_i ⟩ = w ( ⟨ \hat{U}^{\dagger} \hat{S}_i \hat{U} \hat{U}^{\dagger} \hat{S}_z \hat{U} ⟩ - ⟨ \hat{U}^{\dagger} \hat{S}_z \hat{U} \hat{U}^{\dagger} \hat{S}_i \hat{U} ⟩ ) =$$
$$ = w ( ⟨ \hat{U}^{\dagger} \hat{S}_i \hat{S}_z \hat{U} ⟩ - ⟨ \hat{U}^{\dagger} \hat{S}_z \hat{S}_i \hat{U} ⟩ ) $$

So my question is what is the best/easiest way to go now? I tried using the definition of expectation value and the fact that the state at t=0 is ( changing to z-basis ):

$$ |\psi (t= 0)⟩ = |+⟩_x = \frac{1}{\sqrt{2}} ( |+⟩_z + |-⟩_z ) $$

So that

$$ ⟨ [ \hat{S}_i , \hat{H} ] ⟩ = \frac{w}{2} \Bigl( ⟨ ⟨+|_z + ⟨-|_z | e^{-iw\hat{S}_zt} \hat{S}_i \hat{S}_z e^{iw\hat{S}_zt} | |+⟩_z + |-⟩_z ⟩ \Bigr) $$

But I don't really know how to continue here to find the expectation value of the exponential term with t-dependence! Any advice appreciated:)
 
Physics news on Phys.org
Rayan said:
Homework Statement: Assume a spin s= 1/2 is subjected to an external magnetic field B. The Hamiltonian is then given by H, and that at t= 0, the spin of the particle is in the eigenstate of the S_x operator with the eigenvalue:
The problem statement is incomplete. What is it that you are supposed to calculate?

Rayan said:
So first I derived the expressions for the dynamics of the spin operators and got:
$$ \frac{d\hat{S}_y}{dt} = w\hat{S}_x^H $$
$$ \frac{d\hat{S}_x}{dt} = w\hat{S}_y^H $$
$$ \frac{d\hat{S}_z}{dt} = 0 $$
Are you sure about those?

Rayan said:
Starting with the first term:
$$ ⟨ [ \hat{S}_i , \hat{H} ] ⟩ = ⟨ {S}_i \hat{H} ⟩ - ⟨ \hat{H} \hat{S}_i ⟩ = w ( ⟨ \hat{U}^{\dagger} \hat{S}_i \hat{U} \hat{U}^{\dagger} \hat{S}_z \hat{U} ⟩ - ⟨ \hat{U}^{\dagger} \hat{S}_z \hat{U} \hat{U}^{\dagger} \hat{S}_i \hat{U} ⟩ ) =$$
$$ = w ( ⟨ \hat{U}^{\dagger} \hat{S}_i \hat{S}_z \hat{U} ⟩ - ⟨ \hat{U}^{\dagger} \hat{S}_z \hat{S}_i \hat{U} ⟩ ) $$
Stat by finding a simplified equation for ## [ \hat{S}_i , \hat{H} ] ##.

And do you have to use the Heisenberg picture?
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
It's given a gas of particles all identical which has T fixed and spin S. Let's ##g(\epsilon)## the density of orbital states and ##g(\epsilon) = g_0## for ##\forall \epsilon \in [\epsilon_0, \epsilon_1]##, zero otherwise. How to compute the number of accessible quantum states of one particle? This is my attempt, and I suspect that is not good. Let S=0 and then bosons in a system. Simply, if we have the density of orbitals we have to integrate ##g(\epsilon)## and we have...
Back
Top