This is the diagram I used. If anyone is interested, I posted Mathematica code below for an interactive Mainpulate. In the diagram, can we not say:
(corrected following as per comment below)
$$
\triangle QAO \sim \triangle BQO \sim \triangle BAQ
$$
via AAS rule. Then we have:
$$
\frac{QA}{BA}=\frac{AO}{AQ}
$$
or $$(QA)^2=AO\cdot BA?$$
View attachment 248428
[CODE title="Mathematica code to inspect Agnesi Witch"]theCircle =
ContourPlot[x^2 + (y - 1)^2 == 1, {x, -3, 3}, {y, -3, 3},
PlotRange -> 5, Axes -> True];
theLine = Graphics[Line[{{-3, 2}, {3, 2}}]];
theX[t_] := 2 Cot[t];
theY[t_] := 2 Sin[t]^2
myT = Pi/4;
witchPt = ParametricPlot[{theX[t], theY[t]}, {t, Pi/14, Pi/2}];
Manipulate[
point1 = Graphics[{Red, PointSize[0.01], Point[theA]}];
point2 =
Graphics[{Blue, PointSize[0.01], Point[{theX[myT], theY[myT]}]}];
bLen[t_] := {theX[t] - 2 Sin[t] Cot[t]^2 Cos[t], theY[t]};
myLine2 = Graphics[Line[{{theX[myT], theY[myT]}, bLen[myT]}]];
myLine = Graphics[Line[{{0, 0}, {theX[myT], 2}}]];
myLine3 = Graphics[Line[{{theX[myT], theY[myT]}, {theX[myT], 2}}]];
greenPoint =
Graphics[{Darker@Green, PointSize[0.01], Point[bLen[myT]]}];
myLine4 = Graphics[{Darker@Green, Line[{{0, 2}, bLen[myT]}]}];
theLabels = Graphics[{Style[Text["Q", {-0.2, 2.2}], 14],
Style[Text["A", {theX[myT], 2.2}], 14],
Style[Text["P", {theX[myT] + 0.2, theY[myT] + 0.1}], 14],
Style[Text["B", bLen[myT] - {-0.1, 0.15}], 14],
Style[Text["O", {-0.15, -0.15}], 14]}];
Show[{theCircle, theLine, witchPt, myLine, point1, point2, myLine2,
myLine3, myLine4, theLabels, greenPoint}], {myT, Pi/20, Pi/2},
TrackedSymbols :> True][/CODE]