Theorem mathematic for relativity

nulliusinverb
Messages
7
Reaction score
0
hello!:

my problem is about of a theorem mathematic,as I prove the following theorem?

F(x)=F(a) + \sum^{n}_{i=1}(x^{i}-a^{i})H_{i}(x)

good first start with the fundamental theorem of calculus: (for proof):

F(x) - F(a) = \int^{x}_{a}F'(s)ds sustitution: s=t(x - a) + a \Rightarrow [a,x] to [0,1] then:
ds=dt(x - a) later:
f(x) - F(a)= (x - a)\int^{1}_{0}F'(t(x - a) +a)dt

okk my problem is how to get to the sum \sum?

is physics relativistic forum, because of this theorem I can get to the change of coordinates in the Einstein equations and find bases for the manifolds of space-time. thanks!
 
Physics news on Phys.org
http://en.wikipedia.org/wiki/Taylor_series

Your representation is a modification of the standard Taylor series representation, where Hi(a) (not Hi(x)) is related to the ith derivative of F.

Furthermore the term in parenthesis should be (x-a)i not xi - ai
 
mathman said:
Furthermore the term in parenthesis should be (x-a)i not xi - ai
I know it's not clear from what he said, but he has a different theorem in mind. Wald's statement of the theorem goes like this:
If ##F:\mathbb R^n\to\mathbb R## is ##C^\infty##, then for each ##a=(a^1,\dots,a^n)\in\mathbb R^n## there exist ##C^\infty## functions ##H_\mu## such that for all ##x\in\mathbb R^n## we have
$$F(x)=F(a)+\sum_{\mu=1}^n(x^\mu-a^\mu)H_\mu(x).$$ Furthermore, we have
$$H_\mu(a)=\frac{\partial F}{\partial x^\mu}\bigg|_{x=a}.$$​
A similar theorem is stated and proved in Isham's book on differential geometry, page 82. So nulliusinverb, I suggest you take a look at that.
 
Fredrick thank you very much, the book is recommended to study this issue, although the theorem is raised from other values ​​is the same. thank!

ps: "Modern Differential Geometry for Physicists" autor: Isham
 
Notation is a major problem here. xi usually means the ith power of x. For this theorem it means the ith component of a vector x ε Rn.

I suggest that, when anyone asks a question, make sure the notation is clear!
 
i apologize for the delay, here is the proof:

F:ℝ^{n}\rightarrowℝ

i have:

F(\vec{x})-F(\vec{a})= \sum^{m}_{μ=1}F(t(x^{μ}-a^{μ})+a^{μ},0...,0)^{t=1}_{t=0}
then:
=\sum^{m}_{μ=1}(x^{μ}-a^{μ})\int^{1}_{0}\frac{\partial F}{\partial u^{μ}}((t(x^{μ}-a^{μ})+a^{μ},0...,0)dt
where:

H_{μ}(\vec{x})=\int^{1}_{0}\frac{\partial F(\vec{x})}{\partial u^{μ}}dt

finally:

F(\vec{x})-F(\vec{a})= \sum^{m}_{μ=1}H_{μ}(\vec{x})(x^{μ}-a^{μ})

qed

thanks you very much to all!
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
In Philippe G. Ciarlet's book 'An introduction to differential geometry', He gives the integrability conditions of the differential equations like this: $$ \partial_{i} F_{lj}=L^p_{ij} F_{lp},\,\,\,F_{ij}(x_0)=F^0_{ij}. $$ The integrability conditions for the existence of a global solution ##F_{lj}## is: $$ R^i_{jkl}\equiv\partial_k L^i_{jl}-\partial_l L^i_{jk}+L^h_{jl} L^i_{hk}-L^h_{jk} L^i_{hl}=0 $$ Then from the equation: $$\nabla_b e_a= \Gamma^c_{ab} e_c$$ Using cartesian basis ## e_I...
Back
Top