- #1
sugar_scoot
- 7
- 0
Given the number of molecules hitting unit area of a surface per second with speeds between v and v +dv and angles between [tex]\theta[/tex] and d[tex]\theta[/tex] to the normal is
show that the average value of cos [tex]\theta[/tex] for these molecules is [tex]\frac{2}{3}[/tex].
I have convinced myself the answer is 4/3 instead. Can anyone show me where I am wrong?
I used P(cos [tex]\theta[/tex]) = sin [tex]\theta[/tex] cos [tex]\theta[/tex]
Then I normalized:
1 = c [tex]\int^{\pi}_{0} sin \theta cos \theta d\theta[/tex]
so that:
c = 2
<cos [tex]\theta[/tex]> = 2 [tex]\int^{\pi}_{0} sin \theta cos^{2}\theta d \theta[/tex] = 2 (2/3) = 4/3
[tex]\frac{1}{2} v n f(v)dv sin \theta cos \theta d\theta[/tex]
show that the average value of cos [tex]\theta[/tex] for these molecules is [tex]\frac{2}{3}[/tex].
I have convinced myself the answer is 4/3 instead. Can anyone show me where I am wrong?
I used P(cos [tex]\theta[/tex]) = sin [tex]\theta[/tex] cos [tex]\theta[/tex]
Then I normalized:
1 = c [tex]\int^{\pi}_{0} sin \theta cos \theta d\theta[/tex]
so that:
c = 2
<cos [tex]\theta[/tex]> = 2 [tex]\int^{\pi}_{0} sin \theta cos^{2}\theta d \theta[/tex] = 2 (2/3) = 4/3