Thermodynamic Cycle -- Work done as a function of Heat absorbed

Click For Summary
SUMMARY

The discussion centers on the thermodynamic cycle involving an ideal thermal machine that absorbs heat Q2 from a hot source and performs work W, while transferring heat Q1 to a cold source with an efficiency of 20%. The confusion arises from the sign convention used for Q1, where it is initially considered negative due to its transfer from the system. The correct interpretation, however, indicates that Q1 should be treated as positive when defined as heat given to the cold source. The final relationship derived is W = -1/4 Q1, emphasizing the importance of consistent sign conventions in thermodynamic equations.

PREREQUISITES
  • Understanding of thermodynamic cycles and ideal thermal machines
  • Familiarity with the first law of thermodynamics
  • Knowledge of efficiency calculations in thermodynamic systems
  • Proficiency in algebraic manipulation of equations
NEXT STEPS
  • Study the first law of thermodynamics in detail
  • Learn about different sign conventions in thermodynamics
  • Explore the Carnot cycle and its efficiency calculations
  • Investigate real-world applications of thermal machines and their efficiencies
USEFUL FOR

Students and professionals in mechanical engineering, thermodynamics, and energy systems who are looking to deepen their understanding of thermal machines and efficiency calculations.

Tesla In Person
Messages
34
Reaction score
13
Homework Statement
Work done as a function of Heat absorbed
Relevant Equations
e = W / Qh
During a thermodynamic cycle, an ideal thermal machine absorbs heat Q2 > 0 from a hot source and uses it to perform Work W > 0, giving a cold source a heat Q1 < 0 with an efficiency of 20% . How much is the work done as a function of Q1 ?I have 2 question regarding this problem: 1) Why is Q1 the heat given to cold source negative? Is it because it leaves the system ?
2) To solve this I used the equation e = W / QH . QH here is Q2 and Qc is Q1 . Also
Q2 = Q1 + W . So substituting this into the first equation it becomes e = W / (Q1 + W ) setting this equation equal to 20 which is the efficiency and simplifying gives the answer W = 1/4 Q1 but it's wrong the right answer has a negative sign. It's - Q1 / 4 . Can anyone explain why ? Thanks
 
Physics news on Phys.org
Tesla In Person said:
During a thermodynamic cycle, an ideal thermal machine absorbs heat Q2 > 0 from a hot source and uses it to perform Work W > 0, giving a cold source a heat Q1 < 0 with an efficiency of 20% . How much is the work done as a function of Q1 ?1) Why is Q1 the heat given to cold source negative? Is it because it leaves the system ?

I think the problem statement is incorrect. When a thermal machine takes in positive heat from a hot source and does a positive amount of work, then a positive amount of heat is transferred to the cold source. So, if Q1 is defined as the heat given to the cold source, then Q1 is a positive quantity.

If, however, you were to define Q1 as the heat transferred to the machine from the cold source, then Q1 would be a negative quantity.

The wording of the problem implies that Q1 is the heat transferred to the cold reservoir. So, Q1 should be positive. Thus, it seems to me that the problem statement is contradictory.

Tesla In Person said:
2) To solve this I used the equation e = W / QH . QH here is Q2 and Qc is Q1 . Also
Q2 = Q1 + W .
How are you defining Q1 here? Is it the heat transferred from the machine to the cold source or is it the heat transferred from the cold source to the machine?

Tesla In Person said:
So substituting this into the first equation it becomes e = W / (Q1 + W ) setting this equation equal to 20 which is the efficiency and simplifying gives the answer W = 1/4 Q1 but it's wrong the right answer has a negative sign. It's - Q1 / 4 . Can anyone explain why ? Thanks
Whether the answer should be W = 1/4 Q1 or W = -1/4 Q1 will depend on how Q1 is defined.
 
  • Informative
  • Like
Likes   Reactions: Tesla In Person and Steve4Physics
I agree with @TSny. The wording in the question is poor/misleading.

Edited - correction.

##Q_2## and ##Q_1## are (probably) meant to be the amounts of heat transferred to and from the machine respectively. The sign-convention being used would then be:
heat entering the machine is positive​
heat leaving the machine is negative​

With this sign-convention, conservation of energy gives:
##Q_2 = W – Q_1##
as used here for example: https://okulaer.files.wordpress.com/2014/08/carnot.jpg
 
Last edited:
  • Informative
Likes   Reactions: Tesla In Person
In the first law of thermodynamics, Q is the heat transferred from the surroundings (in this case the reservoirs) to the system (in this case, the working fluid of the engine). So, if heat is transferred from the system to the surroundings, it is negative (in first law parlance). So, for this problem, $$W=Q_1+Q_2$$The efficiency is defined as the work done divided by the heat received from the hot reservoir: $$e=\frac{W}{Q_2}=0.2$$So $$Q_2=5W$$and $$Q_1=-4W$$
 
  • Like
Likes   Reactions: Tesla In Person

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 23 ·
Replies
23
Views
4K