B Time average value of Spin operator

Muthumanimaran
Messages
79
Reaction score
2
From the book Introduction to Quantum Mechanics by Griffiths,. In the section 6.4.1 (weak field zeeman effect) Griffiths tells that the time average value of S operator is just the projection of S onto J while finding the expectation value of J+S

$$S_{avg}=\frac{(S.J)J}{J^2}$$

How to prove this?
 
Physics news on Phys.org
Griffiths gives the standard argument in the vector model for the atom that when ##S## precesses rapidly about ##J##, the tranverse components time-average to zero and the operator can be replaced with a time-averaged operator which is the projection of ##S## on ##J##. Now if you have two regular old vectors, ##A## and ##B## with angle ##\theta## between them, you would write the projection of ##A## on ##B## as $$A_B=A\cos\theta=\frac{(\vec A \cdot \vec B)}{AB}A=\frac{(\vec A \cdot \vec B)}{B^2}B.$$
 
kuruman said:
Griffiths gives the standard argument in the vector model for the atom that when ##S## precesses rapidly about ##J##, the tranverse components time-average to zero and the operator can be replaced with a time-averaged operator which is the projection of ##S## on ##J##. Now if you have two regular old vectors, ##A## and ##B## with angle ##\theta## between them, you would write the projection of ##A## on ##B## as $$A_B=A\cos\theta=\frac{(\vec A \cdot \vec B)}{AB}A=\frac{(\vec A \cdot \vec B)}{B^2}B.$$
Im satisfied with the Griffith's explanation for the above expression, but out of curiosity I am looking for the mathematical proof of the same expression. While searching internet about this question, I saw "Wigner Eckart Theorem" could be used to find this expectation value, but I don't know how? Any idea how to do that?
 
Muthumanimaran said:
Im satisfied with the Griffith's explanation for the above expression, but out of curiosity I am looking for the mathematical proof of the same expression. While searching internet about this question, I saw "Wigner Eckart Theorem" could be used to find this expectation value, but I don't know how? Any idea how to do that?
I believe that ##\vec S_{avg}## is an operator, not an expectation value. If by "mathematical proof" you mean "Starting with an expression for the time-averaged spin operator, use the Wigner-Eckart theorem to show that $$
\vec{S}_{avg}=\frac{(\vec S \cdot \vec J)\vec J}{J^2}$$ in the weak field approximation", the answer is "no I don't have an idea how to do that."
However, you don't need the Wigner-Eckart theorem to find the expectation value ##<\vec S_{avg}>.~## Just follow Griffiths, equations 6-73 to 6.75.
 
  • Like
Likes BvU
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
Back
Top