B Time Dilation: Traveling to a Distant Star in 4.5yr

versine
Messages
24
Reaction score
5
If there is a spaceship traveling at 0.999c, the time to reach a star 100 lyr away would be approx 100 yr (assuming no accel and decel). But on the spaceship, It would be 100 yr * sqrt(1-0.999^2) = 4.5yr.

Why do we take 100 yr as the time seen on Earth and not the time on the spaceship?
 
Physics news on Phys.org
Because presumably we are on Earth? Your question is not clear. The times are specific and different.
 
  • Like
Likes Vanadium 50
Because most people's perspective is primarily rooted on Earth, so when we talk about distances, speeds, and time we usually only specifically state the reference frame when it is different from Earth's.
 
versine said:
If there is a spaceship traveling at 0.999c, the time to reach a star 100 lyr away would be approx 100 yr (assuming no accel and decel). But on the spaceship, It would be 100 yr * sqrt(1-0.999^2) = 4.5yr.

Why do we take 100 yr as the time seen on Earth and not the time on the spaceship?
Because the (length contracted) distance from Earth to the star in the frame of the spaceship is only
##100 lyr * \sqrt{1-0.999^2} = 4.5 lyr##.
 
versine said:
Why do we take 100 yr as the time seen on Earth and not the time on the spaceship?
Because that’s how much time a clock at rest on Earth (strictly speaking, at rest relative to the spaceship before it started on the journey) would count between the departure event and the arrival event.
There is a subtlety here: someone back on Earth doesn’t see the spaceship arrive at the destination at time 100; they see the arrival event happen after their clock has counted off 200 years (the light took 100 years to reach their eyes). Only after they subtract the light travel time from 200 do they conclude that the spaceship arrived at the same time that their clock had counted off 100 years.
 
  • Like
Likes vanhees71, versine and hutchphd
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...
Back
Top