B Time for which a vertical projectile stays motionless in midair

AI Thread Summary
When a projectile is thrown vertically, it momentarily stops at its highest point, but this stop occurs instantaneously, lasting zero seconds. The velocity at this peak is zero only at that exact moment, as it transitions from positive to negative velocity due to gravity. The acceleration is a constant negative value, leading to a linear decrease in velocity until it reaches the ground. Understanding this concept requires the application of Differential Calculus, which allows for the calculation of instantaneous values as intervals approach zero. Thus, while the projectile appears to stop, it does so without any measurable duration.
Curiosity_0
Messages
6
Reaction score
2
We know that if a projectile is thrown vertically, there will be a brief time when it momentarily stops. Can we calculate this brief moment?
 
Physics news on Phys.org
That moment will be an instant, not a period of time.
 
Curiosity_0 said:
We know that if a projectile is thrown vertically, there will be a brief time when it momentarily stops. Can we calculate this brief moment?
It's zero seconds. It's the same for any other velocity on its trajectory.
 
Curiosity_0 said:
We know that if a projectile is thrown vertically, there will be a brief time when it momentarily stops. Can we calculate this brief moment?
As others have said, the velocity is zero only instantaneously. These plots of the vertical motion of a projectile should help. See how the acceleration due to gravity is a constant negative value (-g)?, and how the velocity decreases linearly from the initial ##v_0## down through zero to end up being ##-v_0## when the projectile impacts the ground?

1668529341533.png

https://cnx.org/resources/d7690f6d7871dafd158630fc8ea5b60846d9c9bf/PG12C1_007.png
 
Last edited:
  • Like
Likes Spinnor, Tom.G, topsquark and 1 other person
Curiosity_0 said:
We know that if a projectile is thrown vertically, there will be a brief time when it momentarily stops. Can we calculate this brief moment?
It will stop at a particular clock-reading, but that clock-reading lasts for zero time.

As soon as the projectile reaches its highest point it starts to descend, it spends zero time at the highest point
 
  • Like
Likes hutchphd, topsquark and Ibix
Curiosity_0 said:
We know that if a projectile is thrown vertically, there will be a brief time when it momentarily stops. Can we calculate this brief moment?
We 'think' we know that. Reasonable enough because things happen pretty slowly at the high point it would really boil down to how quickly and accurately we could actually measure that velocity. Zero velocity is actually no more special than +1m/s or -1.05m/s. This was a problem for the old Physicists until the concepts involved in Differential Calculus were introduced. The theory is that you consider a smaller and smaller interval between two (imagined) measurements the limit as the interval approaches zero is the 'true' value of the velocity.
 
  • Like
Likes hutchphd and topsquark
Thread 'Question about pressure of a liquid'
I am looking at pressure in liquids and I am testing my idea. The vertical tube is 100m, the contraption is filled with water. The vertical tube is very thin(maybe 1mm^2 cross section). The area of the base is ~100m^2. Will he top half be launched in the air if suddenly it cracked?- assuming its light enough. I want to test my idea that if I had a thin long ruber tube that I lifted up, then the pressure at "red lines" will be high and that the $force = pressure * area$ would be massive...
I feel it should be solvable we just need to find a perfect pattern, and there will be a general pattern since the forces acting are based on a single function, so..... you can't actually say it is unsolvable right? Cause imaging 3 bodies actually existed somwhere in this universe then nature isn't gonna wait till we predict it! And yea I have checked in many places that tiny changes cause large changes so it becomes chaos........ but still I just can't accept that it is impossible to solve...
Hello! I am generating electrons from a 3D gaussian source. The electrons all have the same energy, but the direction is isotropic. The electron source is in between 2 plates that act as a capacitor, and one of them acts as a time of flight (tof) detector. I know the voltage on the plates very well, and I want to extract the center of the gaussian distribution (in one direction only), by measuring the tof of many electrons. So the uncertainty on the position is given by the tof uncertainty...

Similar threads

Back
Top