In a chapter building up to the theory of plane waves my book starts by introducing(adsbygoogle = window.adsbygoogle || []).push({});

time harmonic electric fields and defines a special case of Gauss's law.

curl(H) = J + dD/dt

curl(H) = sigma * E + epsilon * dE/dt

if E is time harmonic and spacially dependent... E(x,y,z,t) let E' represent the phasor form

curl(H) = sigma * E' + epsilon * j * w * E'

curl(H) = (sigma + epsilon*j*w) E'

of curl(H) = jw(epsilon - j*sigma/w) E'

where epsilon - j*sigma/w = epsilon_c (complex permittivity)

given that... divergence(curl(H)) = 0....

divergence( jw * epsilon_c * E') = 0

therefore divergence(E) = 0

so pv (volume charge density) = 0 by Gauss's law

I am very confused why a time harmonic E field can never bound a charge source and why it's divergence is always zero as my book seems to suggest.

I am guessing of have missed a major assumption and or am misinterpreting something? Looking for some guidance. Thanks!

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# I Time harmonic case of Gauss's Law

Have something to add?

**Physics Forums | Science Articles, Homework Help, Discussion**