Undergrad Time Reversal Breaking in Classical Systems

Click For Summary
Examples of classical systems lacking time reversal symmetry include chaotic systems and those with friction, such as a damped pendulum. Non-reciprocal optics and electromagnetic nonreciprocity are also cited as relevant examples. Systems that experience loss inherently exhibit time-reversal asymmetry. The discussion raises questions about the effects of time reversal on closed systems under external magnetic fields. Overall, the exploration highlights the complexities of time reversal in classical physics.
hokhani
Messages
572
Reaction score
20
TL;DR
Classical systems without time reversal
I am looking for an example of a classical system without time reversal symmetry. I would appreciate any help.
 
Physics news on Phys.org
hokhani said:
Summary:: Classical systems without time reversal

I am looking for an example of a classical system without time reversal symmetry. I would appreciate any help.
Classical physics is symmetric under time reversal. Entropy is the only arrow that I know of classically.
 
As example of classical systems that exhibit behavior that (in some practical sense at least) is not quite symmetric regarding time reversal I guess you could look at chaotic systems.
 
the banal pendulum with friction
$$\ddot x+x=-\dot x$$
is not invariant under the change ##t\mapsto -t##
 
hokhani said:
Summary:: Classical systems without time reversal

I am looking for an example of a classical system without time reversal symmetry. I would appreciate any help.
Check out "non-reciprocal optics" or " electromagnetic nonreciprocity".

Any system with loss is also time-reversal asymmetric.
 
Thank you all for the responses. How about a closed system which is under an external magnetic field? Does time reversal change also the external magnetic field or it only reverses the time in the closed system?
 
Topic about reference frames, center of rotation, postion of origin etc Comoving ref. frame is frame that is attached to moving object, does that mean, in that frame translation and rotation of object is zero, because origin and axes(x,y,z) are fixed to object? Is it same if you place origin of frame at object center of mass or at object tail? What type of comoving frame exist? What is lab frame? If we talk about center of rotation do we always need to specified from what frame we observe?

Similar threads

  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 21 ·
Replies
21
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 41 ·
2
Replies
41
Views
2K
  • · Replies 2 ·
Replies
2
Views
981
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 5 ·
Replies
5
Views
5K
  • · Replies 5 ·
Replies
5
Views
2K