B Time reversal symmetry in topological insulator

Physics news on Phys.org
Yes. Z2 topological insulators must preserve time reversal symmetry in order for there to be edge states since Kramer's degeneracy occurs in systems with time reversal and an odd number of electrons. The second paper refers to a driven system which has periodic time correlations at some frequency.
 
radium said:
Yes. Z2 topological insulators must preserve time reversal symmetry in order for there to be edge states since Kramer's degeneracy occurs in systems with time reversal and an odd number of electrons. The second paper refers to a driven system which has periodic time correlations at some frequency.

1. Does there is broken time-reversal symmetry in Chern insulator or time-reversal symmetry in Chern insulator is preserved ?

2. Does Chern insulator is the topological insulator or it is not such ?
 
The word topological insulator is actually more general and is technically used to describe a state which is insulating in the bulk and has conducting edge states
The one people most associate with the word topological insulator is thenZ2 topological insulator, which preserves time reversal symmetry. Given the above definition, a chern insulator (like the Haldane model) does not have time reversal symmetry since it is broken by the second nearest neighbor terms from the presence of a magnetic field (the flux from the nearest neighbor terms in the honeycomb is zero, but the flux through the next nearest neighbor terms is not). The Z2 topological insulator is like one copy of the Haldane for each spin (considering spin orbit coupling acting as an effective magnetic field for each spin), so together time reversal is preserved. Time reversal basically transforms The up spins into down spins vice versa. For the field if you think of it microscopically (via the current producing it, it is odd under time reversal.
 
From the BCS theory of superconductivity is well known that the superfluid density smoothly decreases with increasing temperature. Annihilated superfluid carriers become normal and lose their momenta on lattice atoms. So if we induce a persistent supercurrent in a ring below Tc and after that slowly increase the temperature, we must observe a decrease in the actual supercurrent, because the density of electron pairs and total supercurrent momentum decrease. However, this supercurrent...
Hi. I have got question as in title. How can idea of instantaneous dipole moment for atoms like, for example hydrogen be consistent with idea of orbitals? At my level of knowledge London dispersion forces are derived taking into account Bohr model of atom. But we know today that this model is not correct. If it would be correct I understand that at each time electron is at some point at radius at some angle and there is dipole moment at this time from nucleus to electron at orbit. But how...
Back
Top