Equilibrium Points of Directed Graphs

AI Thread Summary
The discussion centers on determining the maximum number of equilibrium points in a directed hypercube in Rn. An equilibrium point is defined as a vertex from which one can travel to any adjacent vertex along an edge. The participants agree that the maximum number of equilibrium points can be derived through a construction method involving "doubling" the hypercube and applying induction, leading to the conclusion of 2^(n-1) equilibrium points for n dimensions. The reasoning involves analyzing the edges and their directions based on known equilibrium points. Ultimately, the analysis confirms that the maximum number of equilibrium points is reached when all edge directions are known.
Pauly Man
Messages
129
Reaction score
0
Suppose I have a directed graph in Rn. Where the graph is a hypercube, (a square in R2, a cube in R3 etc).

Suppose I define an equilibrium point of a directed graph to be a vertex such that I can travel from any adjacent vertex along an edge to that vertex. What is the maximum number of equilibrium points of a directed hypercube in Rn?

As an example in R2:

Code:
*****<*****
*          *  
^          ^
*          *
***** >*****

(For some reason the graph isn't formatting properly, hopefully you can imagine that it is supposed to be a square).

The upper left corner is an equilibrium point for the directed hypercube.

I now wish to work out how to find the maximum number of equilibrium points possible in a directed hypercube in Rn. (Any ideas??)
 
Last edited:
Mathematics news on Phys.org
Unfortunately I could not decipher the plotted graph, but in any case you should consider the proyection of the graph on the plane and then argue, as is usually done in graph theory.
 
It's pretty straightforward to show that this is the same as the size of the largest set of unconnected vertices. For that, you can consider the construction procedure of "doubling" the n-dimensional hypercube and connecting each original points with its double. Then using induction you find 2^(n-1) for n dimensions.

There's probably a prettier way to do it, but graph theory isn't my thing.
 
Originally posted by damgo
It's pretty straightforward to show that this is the same as the size of the largest set of unconnected vertices. For that, you can consider the construction procedure of "doubling" the n-dimensional hypercube and connecting each original points with its double. Then using induction you find 2^(n-1) for n dimensions.

There's probably a prettier way to do it, but graph theory isn't my thing.

Thanks damgo. I sat up last night before going to bed and thought about the problem. I came up with this argument (which I'm pleased to see results in the same conclusion you came up with).

There are n2n-1 edges in a hypercube. If we know that we have one equilibrium point then we know the direction of n edges. So it follows that we don't know the direction of n(2n-1-1) edges. If we know of another equilibrium point then we know that it cannot share any edges with the previous equilibrium point, and so we know the direction of another n edges. We therefore do not know the direction of n(2n-1-2) edges.

Continuing on in this fashion we find that for a equilibrium points we have n(2n-1-a) edges for which we are unsure of the direction.

The maximum number of equilibrium points occurs when we know the direction of every edge, which occurs when:

n(2n-1-a) = 0
a = 2n-1
 
Note that I have edited the graph above, so now it hopefully makes sense).
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...

Similar threads

Replies
21
Views
2K
Replies
1
Views
2K
Replies
5
Views
2K
Replies
2
Views
2K
Replies
1
Views
2K
Replies
2
Views
5K
Replies
3
Views
3K
Back
Top