• Support PF! Buy your school textbooks, materials and every day products Here!

Transfer Function of Block Diagram

  • Thread starter ThLiOp
  • Start date
  • #1
9
0

Homework Statement


The block diagram of a PM DC servo motor with current loop feedback is shown below:

QWERTY.jpg


If Ki is adjusted such that J(Ki+R)2 >> 4KTKbL, show that the transfer function may be approximated by

G(s) = (1/Kb) / (τms+1)(τes+1),

where

τm = J(R+Ki) / KTKb

τe = L / (R+Ki)


The Attempt at a Solution


[/B]
I simplified the block diagram and got the transfer function:

G(s) = Kt / (JLs2 + J(R + Ki)s + KtKb)

Then I tried to factor the denominator. When using the quadratic formula, I found:

(-JR - JKi) +/- sqrt( J[ J(R+Ki)2 - 4KtKbL]) / 2JL

Assuming the conditions presented for Ki, I cancelled out the 4KtKbL.

Am I on the right path? In the end, I still couldn't get the transfer function presented in the homework.
 

Answers and Replies

  • #2
818
67
I simplified the block diagram and got the transfer function:

G(s) = Kt / (JLs2 + J(R + Ki)s + KtKb)
That seems fine.

Then I tried to factor the denominator. When using the quadratic formula, I found:

(-JR - JKi) +/- sqrt( J[ J(R+Ki)2 - 4KtKbL]) / 2JL
Those are just the roots, though. If ##ax^2 + bx + c## is your polynomial, then its factored form is ##a(x - x_1)(x - x_2)##, where ##x_1## and ##x_2## are its roots.

Am I on the right path? In the end, I still couldn't get the transfer function presented in the homework.
I can't either. Going your route, and I think the approximation shown is highly suggestive of that, I get the form:
$$
\frac{\dot{\theta}(s)}{V(s)} = \frac{\frac{1}{K_b}}{\tau_m s (\tau_e s + 1)}
$$
Sort of looks like a typo, but maybe there's another route I'm just not seeing.
 

Related Threads on Transfer Function of Block Diagram

  • Last Post
Replies
5
Views
6K
  • Last Post
Replies
3
Views
1K
Replies
0
Views
326
Replies
16
Views
2K
Replies
5
Views
732
Replies
24
Views
3K
  • Last Post
Replies
1
Views
2K
  • Last Post
Replies
3
Views
3K
  • Last Post
Replies
1
Views
937
  • Last Post
Replies
0
Views
2K
Top