MHB Transform Random Var CDF to Standard Normal: F(x)=1-exp(-sqrt x)

rvkhatri
Messages
3
Reaction score
0
How to transform a random variable CDF to a standard normal
Given F(x) = 1- exp (-sqrt x), for x greater that 0

Thanks.
 
Physics news on Phys.org
rvkhatri said:
How to transform a random variable CDF to a standard normal
Given F(x) = 1- exp (-sqrt x), for x greater that 0

Thanks.

Welcome to MHB, rvkhatri! :)

What do you mean by "standard normal"?

Do you mean the PDF?
Or perhaps an equivalent normal distribution?
 
I like Serena said:
Welcome to MHB, rvkhatri! :)

What do you mean by "standard normal"?

Do you mean the PDF?
Or perhaps an equivalent normal distribution?

I meant standard normal distribution i.e. mean = 0, sigma = 1

My class notes say,
if F(x) = 1- exp (-x), there could be one-to-one transformation to a standard normal distribution. But I am not able to get a start on this.
 
rvkhatri said:
I meant standard normal distribution i.e. mean = 0, sigma = 1

My class notes say,
if F(x) = 1- exp (-x), there could be one-to-one transformation to a standard normal distribution. But I am not able to get a start on this.

Suppose the transformation is given by $y=g(x)$.
That is, if X is distributed according to your exponential F(X), then we will have g(X) ~ N(0,1).

Let $\Phi(y)$ be the CDF of the standard normal distribution.

Then the transformation $g$ needs to be such that the standard normal cumulative probability up to y must be the same as the exponential cumulative probability up to x.
As a formula:
$$\Phi(y) = F(x)$$

In other words:
$$y = g(x) = \Phi^{-1}(F(x))$$
 
I like Serena said:
Suppose the transformation is given by $y=g(x)$.
That is, if X is distributed according to your exponential F(X), then we will have g(X) ~ N(0,1).

Let $\Phi(y)$ be the CDF of the standard normal distribution.

Then the transformation $g$ needs to be such that the standard normal cumulative probability up to y must be the same as the exponential cumulative probability up to x.
As a formula:
$$\Phi(y) = F(x)$$

In other words:
$$y = g(x) = \Phi^{-1}(F(x))$$

My class note gives me exactly this formula for trasformation.

Now how do we get value of y in terms of x.
 
rvkhatri said:
My class note gives me exactly this formula for trasformation.

Now how do we get value of y in terms of x.

We already have.

You're probably thinking of rewriting it into an expression using only standard functions.
But I'm afraid we can't.
The function $\Phi(x)$ cannot be expressed as a finite combination of standard functions (this has been proven mathematically).
As a result $\Phi^{-1}(1-e^{-x})$ cannot be expressed in such a form.

The expression we have is as simple as it gets.
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Back
Top