Transforming Trigonometric Integrals with Substitution

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Trig
Click For Summary
SUMMARY

The forum discussion focuses on transforming the integral $$\int\frac{1}{{t}^{2}\sqrt{1+{t}^{2}}} \ dt$$ using trigonometric and hyperbolic substitutions. The primary substitution involves setting $$t=\tan(u)$$, leading to the integral $$\int\frac{\sec(u)}{\tan^2(u)} \ du$$. Further simplifications yield $$I=-\frac{\sqrt{1+t^{2}}}{t}+C$$, confirming the result through both trigonometric and hyperbolic approaches. The discussion emphasizes the importance of careful substitution and back-substitution in integral calculus.

PREREQUISITES
  • Understanding of integral calculus, specifically techniques of substitution.
  • Familiarity with trigonometric identities, particularly $$\tan(u)$$ and $$\sec(u)$$.
  • Knowledge of hyperbolic functions, including $$\sinh(u)$$ and $$\csch(u)$$.
  • Ability to apply the power rule for integration.
NEXT STEPS
  • Study the application of trigonometric substitutions in integral calculus.
  • Learn about hyperbolic functions and their derivatives.
  • Explore advanced integration techniques, including integration by parts.
  • Practice solving integrals involving both trigonometric and hyperbolic functions.
USEFUL FOR

Students and educators in calculus, mathematicians focusing on integration techniques, and anyone looking to deepen their understanding of trigonometric and hyperbolic substitutions in integrals.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
mnt{7.3} nmh{2000}
$$\displaystyle
\int\frac{1}{{t}^{2}\sqrt{1+{t}^{2}}} \ dt = \frac{-\sqrt{t^2+1}}{t}+C$$

$\displaystyle t=\tan\left({u}\right)$
$\displaystyle dt=\sec^2(u) \ du $

$$\int\frac{\sec^2\left({u}\right)}
{\tan^2\left({u}\right)sec\left({u}\right)} \ du
\implies\int\frac{\sec\left({u}\right)}{\tan^2\left({u}\right)} \ du $$

Then ??
 
Last edited:
Physics news on Phys.org
What did you get after applying the substitution and simplifying?
 
I added more to the OP
Thinking a reply would come after
Sorry
 
$$\int\frac{\sec^2\left({u}\right)}
{\tan^2\left({u}\right)sec\left({u}\right)} \ du
\implies\int\frac{\sec\left({u}\right)}{\tan^2\left({u}\right)} \ du
\implies\int\frac{\cos\left({u}\right)}{\sin^2\left({u}\right)} \ du
$$
 
Last edited:
karush said:
I added more to the OP
Thinking a reply would come after
Sorry

Okay...good...now think of the definitions:

$$\tan(u)\equiv\frac{\sin(u)}{\cos(u)}$$

$$\sec(u)\equiv\frac{1}{\cos(u)}$$

And write everything in terms of sine and cosine in a simple fraction...what do you get?
 
$$ \int\frac{cos\left({u}\right)}{\sin^2\left({u}\right)} \ du
$$

$$w=\sin\left({u}\right) \ \ dw=\cos\left({u}\right) \ du $$

Then

$$\int \frac{dw}{{w}^{2}}$$

Well ?
 
What you actually now have is:

$$I=\int w^{-2}\,dw$$

Use the power rule, then back-substitute for $w$, and then for $u$...:)
 
$$I=\int w^{-2}\,dw=\frac{1}{w}+C $$

$w=\sin\left({u}\right)$
So
$\frac{1}{\sin\left({u}\right)}+C$
Or
$\sec(u)+C$

Wait I'm lost...
 
You would have:

$$I=-w^{-1}+C=-\csc(u)+C=-\csc(\arctan(t))+C=...$$?
 
  • #10
Well I think then that
$$\csc(u)=-\sqrt{1+{t}^{2}}/t $$
So
$$ I=-\frac{\sqrt{1+{t}^{2}}} {t}+C $$
The substitutions of $u$ and $w$ kinda ###
 
Last edited:
  • #11
Don't forget the negative sign in front of the cosecant function. :D
 
  • #12
We could also approach this integral using a hyperbolic trig. substitution...we are given:

$$I=\int \frac{1}{t^2\sqrt{t^2+1}}\,dt$$

Observing that we have:

$$\cosh^2(u)=\sinh^2(u)+1$$

We could then let:

$$t=\sinh(u)\,\therefore\,dt=\cosh(u)\,du$$

And we get:

$$I=\int \frac{1}{\sinh^2(u)\sqrt{\sinh^2(u)+1}}\,\cosh(u)\,du=\int \csch^2(u)\,du$$

Using the fact that:

$$\frac{d}{du}(-\coth(u))=\csch^2(u)$$

We now have:

$$I=-\coth(u)+C$$

Now, using the identity:

$$\coth(u)=\sqrt{1+\csch^2(u)}$$

We then may write:

$$I=-\sqrt{1+t^{-2}}+C=-\frac{\sqrt{t^2+1}}{t}+C$$
 
  • #13
$$-\sqrt{1+t^{-2}}=-\dfrac{\sqrt{1+t^2}}{|t\,|}$$
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
951
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K