MHB Transforming Trigonometric Integrals with Substitution

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Trig
Click For Summary
The discussion focuses on transforming the integral of the function 1/(t^2√(1+t^2)) using trigonometric and hyperbolic substitutions. The initial substitution t = tan(u) leads to a simplification that results in an integral involving secant and tangent functions. Further simplification using sine and cosine yields an integral that can be expressed in terms of w = sin(u), leading to the final result of -√(1+t^2)/t + C. An alternative approach using hyperbolic functions is also presented, confirming the same result through different substitutions. The discussion emphasizes the importance of careful substitution and simplification in solving trigonometric integrals.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
mnt{7.3} nmh{2000}
$$\displaystyle
\int\frac{1}{{t}^{2}\sqrt{1+{t}^{2}}} \ dt = \frac{-\sqrt{t^2+1}}{t}+C$$

$\displaystyle t=\tan\left({u}\right)$
$\displaystyle dt=\sec^2(u) \ du $

$$\int\frac{\sec^2\left({u}\right)}
{\tan^2\left({u}\right)sec\left({u}\right)} \ du
\implies\int\frac{\sec\left({u}\right)}{\tan^2\left({u}\right)} \ du $$

Then ??
 
Last edited:
Physics news on Phys.org
What did you get after applying the substitution and simplifying?
 
I added more to the OP
Thinking a reply would come after
Sorry
 
$$\int\frac{\sec^2\left({u}\right)}
{\tan^2\left({u}\right)sec\left({u}\right)} \ du
\implies\int\frac{\sec\left({u}\right)}{\tan^2\left({u}\right)} \ du
\implies\int\frac{\cos\left({u}\right)}{\sin^2\left({u}\right)} \ du
$$
 
Last edited:
karush said:
I added more to the OP
Thinking a reply would come after
Sorry

Okay...good...now think of the definitions:

$$\tan(u)\equiv\frac{\sin(u)}{\cos(u)}$$

$$\sec(u)\equiv\frac{1}{\cos(u)}$$

And write everything in terms of sine and cosine in a simple fraction...what do you get?
 
$$ \int\frac{cos\left({u}\right)}{\sin^2\left({u}\right)} \ du
$$

$$w=\sin\left({u}\right) \ \ dw=\cos\left({u}\right) \ du $$

Then

$$\int \frac{dw}{{w}^{2}}$$

Well ?
 
What you actually now have is:

$$I=\int w^{-2}\,dw$$

Use the power rule, then back-substitute for $w$, and then for $u$...:)
 
$$I=\int w^{-2}\,dw=\frac{1}{w}+C $$

$w=\sin\left({u}\right)$
So
$\frac{1}{\sin\left({u}\right)}+C$
Or
$\sec(u)+C$

Wait I'm lost...
 
You would have:

$$I=-w^{-1}+C=-\csc(u)+C=-\csc(\arctan(t))+C=...$$?
 
  • #10
Well I think then that
$$\csc(u)=-\sqrt{1+{t}^{2}}/t $$
So
$$ I=-\frac{\sqrt{1+{t}^{2}}} {t}+C $$
The substitutions of $u$ and $w$ kinda ###
 
Last edited:
  • #11
Don't forget the negative sign in front of the cosecant function. :D
 
  • #12
We could also approach this integral using a hyperbolic trig. substitution...we are given:

$$I=\int \frac{1}{t^2\sqrt{t^2+1}}\,dt$$

Observing that we have:

$$\cosh^2(u)=\sinh^2(u)+1$$

We could then let:

$$t=\sinh(u)\,\therefore\,dt=\cosh(u)\,du$$

And we get:

$$I=\int \frac{1}{\sinh^2(u)\sqrt{\sinh^2(u)+1}}\,\cosh(u)\,du=\int \csch^2(u)\,du$$

Using the fact that:

$$\frac{d}{du}(-\coth(u))=\csch^2(u)$$

We now have:

$$I=-\coth(u)+C$$

Now, using the identity:

$$\coth(u)=\sqrt{1+\csch^2(u)}$$

We then may write:

$$I=-\sqrt{1+t^{-2}}+C=-\frac{\sqrt{t^2+1}}{t}+C$$
 
  • #13
$$-\sqrt{1+t^{-2}}=-\dfrac{\sqrt{1+t^2}}{|t\,|}$$
 

Similar threads

Replies
2
Views
887
Replies
3
Views
2K
Replies
6
Views
2K
Replies
8
Views
2K
Replies
6
Views
3K
Replies
1
Views
1K
Replies
1
Views
2K