Transition to Math Proofs: Tips & Books for Upper Level Courses

  • Thread starter Thread starter IKonquer
  • Start date Start date
  • Tags Tags
    Proofs Writing
AI Thread Summary
The discussion centers on transitioning from computational mathematics to proof-based upper-level courses like abstract algebra and analysis. Participants recommend several key resources to aid in this transition. Notable mentions include Krantz's and Bellman's works, which provide insights into logical implications and proof structures. The first chapters of Zorich's Analysis I and Serge Lang's Introduction to Linear Algebra are highlighted for their clarity in deriving proofs from logical chains. Additionally, Stephen R. Lay's book is suggested as a solid introduction to rigorous mathematics, particularly for understanding proofs. Other recommended titles include Gleason's Fundamentals of Abstract Analysis, Maddox's Transition to Abstract Mathematics, and Epp's Discrete Mathematics, which are considered beneficial for developing proof-writing skills. Overall, the emphasis is on understanding the logic behind proofs and practicing with various texts to build confidence and proficiency in abstract mathematical concepts.
IKonquer
Messages
47
Reaction score
0
Hi all, I have taken Calc III, Linear Algebra (Bretscher's book), and an ODE class, which have all been mostly computational. I plan on taking upper level math courses such as abstract algebra and analysis, and my understanding is that the latter are proof based rather than computational. Are there any good books out there that can help me make that transition to more abstract ideas and proofs?

Thanks in advance.
 
Physics news on Phys.org
https://www.amazon.com/dp/007154948X/?tag=pfamazon01-20 is a lifesaver, as was the first chapter of
Zorich Analysis I as well as the first chapter of Serge Lang's
Introduction to Linear Algebra
. Another phenomenal book is https://www.amazon.com/dp/0394015592/?tag=pfamazon01-20
Basically the greatest discovery I've had this year was to realize how proofs follow from
logic, i.e. implications, a chain of implications, logical equivalences etc... I think the first few
chapters of the Krantz book will give you the idea then you should do some further
research into how to use these ideas, another book that uses these ideas very well is
https://www.amazon.com/dp/0131481010/?tag=pfamazon01-20. The most preferable thing, to me, would be to do
Krantz & Bellman along with the first chapter of Lang, then the first few chapters of Lay.
Finish it off by doing the first chapter of Zorich & you'll be where I am now, trying to get
better :-p Before all of this I was extremely insecure about proofs, struggling to
understand the "logic" behind any of it & struggling to find patterns but now it's an
enjoyable experience of turning authors "wordy" proofs into a chain of logical implications,
well - assuming they are not too advanced or just incomprehensible to me :shy:

Note: These are personal preferences from experience, honestly all you need is Krantz,
Bellman & Lay as each gives insight I have not found in a single other book after
mercilessly searching,. The Lang chapter is just so beautiful as so much of the chapter is
derivable from a single chain of logic:

1) Take two vectors A & B 2) Make B longer than A (see page 23) 3) Find a vector orthogonal to B. 4) (A - cB)•B = 0 5) Use Pythagorean Theorem 6) ||A||² = (||A - cB||)² + ||cB||²
7) Prove that ||cB|| = |c|||B|| 8) ||cB||² = (√(cB)-(cB))² = c²B-B = c²||B||² 9) ||cB||² = c²||B||² ⇒||cB|| = |c|||B|| 10) ||A||² = (||A - cB||)² + |c|²||B||²
11) Notice c²||B||² ≤ ||A||² 12) Derive c 13) (A - cB)•B = 0 14) A•B - cB•B = 0 15) A•B = cB•B 16) c = (A•B)/(B•B) 17) c²||B||² ≤ ||A||² → 18) [(A•B)/(B•B)]² ||B||² ≤ ||A||²
19) [(A•B)/||B||²]² ||B||² ≤ ||A||² 20) [(A•B)²/||B||²] ≤ ||A||² 21) (A•B)²≤ ||A||²||B||² 22) A•B ≤ ||A||||B|| 23) C•C ≤ ||C||||C|| 24) Derive the Triangle Inequality Yourself!
(Sig on another forum :redface:).

Another list of books worth researching, as regards getting used to proofs, are:
Gleason - Fundamentals of Abstract Analysis
Maddox - Transition to Abstract Mathematics
Morash - Bridge to Abstract Math
Epp - Discrete Mathematics
Grimaldi - Discrete Mathematics

These looked like the best choices to me, hope this helps somewhat!
 
Last edited by a moderator:
to learn to write proofs I used a book called 'the art and craft of problem solving' by paul zeitz. It's pretty informal... but it's great. It isn't specifically about proof writing but the entire book will help you, with proofs and a whole lot more
 
I personally think Stephen R Lay's book is a good transition to more rigorous mathematics.
First few chapters are really recommended for people need to understand more on proofs.
 
TL;DR Summary: Book after Sakurai Modern Quantum Physics I am doing a comprehensive reading of sakurai and I have solved every problem from chapters I finished on my own, I will finish the book within 2 weeks and I want to delve into qft and other particle physics related topics, not from summaries but comprehensive books, I will start a graduate program related to cern in 3 months, I alreadily knew some qft but now I want to do it, hence do a good book with good problems in it first...
This is part 2 of my thread Collection of Free Online Math Books and Lecture Notes Here, we will consider physics and mathematical methods for physics resources. Now, this is a work in progress. Please feel free comment regarding items you want to be included, or if a link is broken etc. Note: I will not post links to other collections, each link will point you to a single item. :book:📚📒 [FONT=trebuchet ms]Introductory college/university physics College Physics, Openstax...

Similar threads

Replies
5
Views
4K
Replies
6
Views
2K
Replies
3
Views
1K
Replies
3
Views
1K
Replies
16
Views
10K
Replies
5
Views
3K
Replies
8
Views
3K
Back
Top