Translation Surfaces: Geometric Definition & Billiard Systems

  • Context: MHB 
  • Thread starter Thread starter Joppy
  • Start date Start date
  • Tags Tags
    Surfaces Translation
Click For Summary
SUMMARY

This discussion focuses on the geometric definition of translation surfaces and their application in billiard systems. Participants clarify that translation surfaces can be generated from non-convex polygons, challenging the assumption that only convex shapes apply. The unfolding process of billiard trajectories allows for the identification of edges across neighboring rectangles, leading to the creation of translation surfaces that can be topologically equivalent to a torus. The conversation emphasizes the importance of understanding the relationship between geometric definitions and dynamical systems.

PREREQUISITES
  • Understanding of translation surfaces and their geometric properties.
  • Familiarity with billiard systems and trajectory unfolding.
  • Knowledge of topological concepts, specifically toroidal equivalence.
  • Basic grasp of polygon properties, including convex and non-convex shapes.
NEXT STEPS
  • Research the geometric properties of translation surfaces in detail.
  • Explore the dynamics of billiard systems and their mathematical implications.
  • Study the concept of topological equivalence, particularly in relation to tori.
  • Investigate the role of non-convex polygons in dynamical systems.
USEFUL FOR

Mathematicians, physicists, and students interested in dynamical systems, geometric topology, and the mathematical foundations of billiard systems will benefit from this discussion.

Joppy
MHB
Messages
282
Reaction score
22
In this Wiki article, a geometric definition of a translation surface is given.

I'm lost in at the first line were it is stated that a given collection of polygons need not be convex. How is this possible? I am trying to understand translation surfaces from the perspective of dynamical systems, specifically, billiard systems. In this setting we can 'unfold' the trajectory of a point particle. But surely this unfolding process only works for trajectories confined to convex regions?

I suspect my confusion comes from the fact that generating a translation surface from unfolding a billiard trajectory, and generating one given the definition from Wiki are different things. I also don't understand what is meant by $s_j = s_i + \vec{v}_i$. Are we saying that for every side in a plane of polygons, there exist some other side which lies in the same direction?
Thanks
 
Physics news on Phys.org
Hey Joppy,

Here's my 2 cents.

Since it's about billiards, I imagine that we define a set of neighboring rectangles, each representing the table. Now we can shoot the ball, and instead of reflecting it against an edge, we let it roll into the next rectangle.
That does mean that various edges are actually the same, so they are identified with each other through a translation.

And instead of convex rectangles, we might also have non-convex polygons.
 
I like Serena said:
Hey Joppy,

Here's my 2 cents.

Since it's about billiards, I imagine that we define a set of neighboring rectangles, each representing the table. Now we can shoot the ball, and instead of reflecting it against an edge, we let it roll into the next rectangle.
That does mean that various edges are actually the same, so they are identified with each other through a translation.

Thanks! Yes that's how I understand it to work for convex polygonal billiards. I am curious as to how this works, if at all, for billiard tables which are not convex.
I like Serena said:
Now turn those rectangles into rectangular prisms and we have a translation space.

Do you mean we fold up this mesh of rectangles into a prism? For example, if we have a horizontal trajectory inside the unit square, and we let it roll into four squares (so that we have four squares side by side), do we fold them back up to obtain a cube with two faces missing?

Supposedly, using this method of unfolding, some trajectories will yield a torus as the translation surface. I would like to know in what sense the translation surface is a torus (for this case).
 
For a billiard table we wouldn't be folding squares up into a cube.
Instead we have 4 neighboring rectangles. And when the ball rolls over a rightmost edge, it will magically appear on the corresponding leftmost edge.Same for top and bottom.

Now imagine a rectangle with a halfsize rectangle removed from a corner. We put again 4 such shapes next each to other in a mirrored layout. There we go.

As for a torus, we effectively get that when we have just a single rectangle. That is, it's topologically equivalent to a torus.
 
I like Serena said:
For a billiard table we wouldn't be folding squares up into a cube.
Instead we have 4 neighboring rectangles. And when the ball rolls over a rightmost edge, it will magically appear on the corresponding leftmost edge.Same for top and bottom.

Now imagine a rectangle with a halfsize rectangle removed from a corner. We put again 4 such shapes next each other in a mirrored layout. There we go.

As for a torus, we effectively get that when we have just a single rectangle. That is, it's topologically equivalent to a torus.

Thanks! :)

(I should have read this before asking..)

edit: This article is also nice, if anyone is interested.
 
Last edited:

Similar threads

  • · Replies 7 ·
Replies
7
Views
3K
Replies
1
Views
2K
  • · Replies 21 ·
Replies
21
Views
5K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
5K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 51 ·
2
Replies
51
Views
5K
  • · Replies 10 ·
Replies
10
Views
6K