Calculating Time Dilation for Travel to Alpha Centauri

daenku32
Messages
2
Reaction score
0
Say I travel to Alpha Centauri (4.35 light-years from the Sun) AND back to Earth at 50 percent of speed of light.

How much time would the clock on my spaceship and a clock on Earth record me to have taken?
 
Physics news on Phys.org
Is this a homework question?
 
Nope. In 28 with 3 kids. I'm just trying to self-educate myself on my spare time (the little I have).
 
Even if it isn't a homework problem you won't learn anything by someone simply telling you the answer, as I'm sure you know. So I'll try and give you a push in the right direction, if you have any problems with specifics just post back here and we can work them out.

Basically what you want to do is lay down what's happening in whatever coordinate system is easiest. In this case it's easiest to lay things down in the Earth's system. Say that both frames start out at the Earth at t=0, x=0. The guy in the spaceship is going to head off to the star at the given speed, so you can work out the distance and time at which this happen in Earth's frame. Likewise you can work out the time at which he returns to Earth. You can then use the Lorentz transformation to convert the coordinates of each event in the Earth's frame into the coordinates of the space ship's frame.
 
As a shortcut, you could also just use the time dilation formula, t \sqrt{1 - v^2/c^2}. So, for example, if someone was moving at 0.8c for 60 minutes in my frame, then I could predict that their clock would only elapse 60 \sqrt{1 - 0.8^2} = 36 minutes in my frame.
 
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
ASSUMPTIONS 1. Two identical clocks A and B in the same inertial frame are stationary relative to each other a fixed distance L apart. Time passes at the same rate for both. 2. Both clocks are able to send/receive light signals and to write/read the send/receive times into signals. 3. The speed of light is anisotropic. METHOD 1. At time t[A1] and time t[B1], clock A sends a light signal to clock B. The clock B time is unknown to A. 2. Clock B receives the signal from A at time t[B2] and...
From $$0 = \delta(g^{\alpha\mu}g_{\mu\nu}) = g^{\alpha\mu} \delta g_{\mu\nu} + g_{\mu\nu} \delta g^{\alpha\mu}$$ we have $$g^{\alpha\mu} \delta g_{\mu\nu} = -g_{\mu\nu} \delta g^{\alpha\mu} \,\, . $$ Multiply both sides by ##g_{\alpha\beta}## to get $$\delta g_{\beta\nu} = -g_{\alpha\beta} g_{\mu\nu} \delta g^{\alpha\mu} \qquad(*)$$ (This is Dirac's eq. (26.9) in "GTR".) On the other hand, the variation ##\delta g^{\alpha\mu} = \bar{g}^{\alpha\mu} - g^{\alpha\mu}## should be a tensor...
Back
Top