raul_l
- 105
- 0
Hi.
What's wrong here?
I'm pretty sure I did all the operations correctly so I must be making some kind of conceptual flaw.
(first see the attachment)
\triangle ABC \sim \triangle BDC
\frac{S_{ABC}}{S_{BDC}}=\frac{AB^2}{BD^2}
\frac{S_{ABC}}{S_{BDC}}=\frac{\frac{AC \times BE}{2}}{\frac{DC \times BE}{2}}=\frac{AC}{DC} \Rightarrow \frac{AC}{DC}=\frac{AB^2}{BD^2}
AB^2=BE^2+AE^2=BC^2-EC^2+(AC-EC)^2=BC^2-EC^2+AC^2-2AC \times EC+EC^2=
=BC^2+AC^2-2AC \times EC
BD^2=BE^2+ED^2=BC^2-EC^2+(EC-DC)^2=BC^2-EC^2+EC^2-2EC \times DC+CD^2=
=BC^2-2EC \times DC+DC^2
\frac{AC}{DC}=\frac{BC^2+AC^2-2AC \times EC}{BC^2-2EC \times DC+DC^2}
\frac{BC^2-2EC \times DC+DC^2}{DC}=\frac{BC^2+AC^2-2AC \times EC}{AC}
\frac{BC^2}{DC}-2EC+DC=\frac{BC^2}{AC}+AC-2EC
\frac{BC^2}{DC}-AC=\frac{BC^2}{AC}-DC
\frac{BC^2-AC \times DC}{DC}=\frac{BC^2-AC \times DC}{AC} \Rightarrow DC=AC
What's wrong here?
I'm pretty sure I did all the operations correctly so I must be making some kind of conceptual flaw.
(first see the attachment)
\triangle ABC \sim \triangle BDC
\frac{S_{ABC}}{S_{BDC}}=\frac{AB^2}{BD^2}
\frac{S_{ABC}}{S_{BDC}}=\frac{\frac{AC \times BE}{2}}{\frac{DC \times BE}{2}}=\frac{AC}{DC} \Rightarrow \frac{AC}{DC}=\frac{AB^2}{BD^2}
AB^2=BE^2+AE^2=BC^2-EC^2+(AC-EC)^2=BC^2-EC^2+AC^2-2AC \times EC+EC^2=
=BC^2+AC^2-2AC \times EC
BD^2=BE^2+ED^2=BC^2-EC^2+(EC-DC)^2=BC^2-EC^2+EC^2-2EC \times DC+CD^2=
=BC^2-2EC \times DC+DC^2
\frac{AC}{DC}=\frac{BC^2+AC^2-2AC \times EC}{BC^2-2EC \times DC+DC^2}
\frac{BC^2-2EC \times DC+DC^2}{DC}=\frac{BC^2+AC^2-2AC \times EC}{AC}
\frac{BC^2}{DC}-2EC+DC=\frac{BC^2}{AC}+AC-2EC
\frac{BC^2}{DC}-AC=\frac{BC^2}{AC}-DC
\frac{BC^2-AC \times DC}{DC}=\frac{BC^2-AC \times DC}{AC} \Rightarrow DC=AC