Trigonometric Equations Problems - Rather Confused

Click For Summary
SUMMARY

This discussion focuses on solving trigonometric equations, specifically addressing the equations sin θ = √3/2, cos 2θ = 0.5, and tan(2θ - π/4) = 1. The solutions identified include θ = π/3, 2π/3, π/6, 5π/6, π/4, 3π/4, 5π/4, and 7π/4 within the range 0 ≤ θ ≤ 2π. Additionally, the quadratic equation derived from 2cos x = tan x is solved using the quadratic formula, yielding solutions of approximately 51.3 degrees and 128.7 degrees. The discussion emphasizes the importance of clarity and organization in presenting mathematical solutions.

PREREQUISITES
  • Understanding of trigonometric functions (sine, cosine, tangent)
  • Familiarity with inverse trigonometric functions (arcsin, arccos, arctan)
  • Knowledge of trigonometric identities (sin²x + cos²x = 1)
  • Ability to solve quadratic equations using the quadratic formula
NEXT STEPS
  • Study the unit circle and its application in solving trigonometric equations
  • Learn how to graph trigonometric functions using tools like Desmos
  • Explore advanced trigonometric identities and their proofs
  • Practice solving a variety of trigonometric equations to build confidence
USEFUL FOR

Students learning trigonometry, educators teaching trigonometric equations, and anyone seeking to improve their problem-solving skills in trigonometry.

AN630078
Messages
242
Reaction score
25
Homework Statement
Trigonometric equations are by far one of my weakest areas. I have been practising to improve and refine my understanding but I am still a little uncertain in areas. I have attempted some questions below but was wondering if anyone could offer me some advice on how to improve my workings or apply more suitable methods.

Question 1; Solve the following equations giving your solutions as exact fractions of π in the range 0 ≤θ ≤2 π:

a. sin θ=√3/2
b.cos2θ=0.5
c.tan (2θ-π/4)=1

Question 2; Sketch the graphs y=2cos x and y=tan x.
a. How many values of x satisfy the equation in the range 0 ≤θ ≤360 degrees?
b. Show that the x-values at the points of intersection satisfy the equation 2sin^2x+sins-2=0
c. Solve the equation 2cos x=tan x between 0 and 360 degrees
Relevant Equations
tan x=sin x / cos x
sin^2x+cos^2x=1
Question 1;
a. sin θ=√3/2
θ=arcsin √3/2
θ=π/3 rad
sin √3/2=60 degrees
60 degrees *π/180=π/3 rad.

To find the other solutions in the range, sin θ=sin(π-θ)
π-π/3=2π/3
The solutions are π/3 and 2π/3 in the range 0 ≤θ ≤2 π

b. cos2θ=0.5
2θ=arccos 0.5
2θ=π/3 rad
Divide both sides by 2;
θ=π/6 rad

To find the other solutions in the range, cos θ=cos(2π-θ)
2π-π/3=5π/3
Divide by 2 =5π/6

The solutions are π/6 and 5π/6 in the range 0 ≤θ ≤2 π

c. tan (2θ-π/4)=1
2θ-π/4=arctan 1
2θ-π/4 = π/4
Add π/4 to both sides;
2θ=π/4+π/4
2θ=π/2
Divide both sides by 2:
θ=π/4

To find other solutions in the range add π/2:
π/4+π/2=3π/4
3π/4+π/2=5π/4
5π/4+π/2=7π/4

The solutions are π/4, 3π/4, 5π/4 and 7π/4 in the range 0 ≤θ ≤2 π

I have also attached what I think the graphs of these equations would look like to find the required solutions. How can I improve or broaden my answers to more extensively exhibit my workings. I am a little confused here admittedly.

Question 2;
a. I have just plotted the graph using desmos and attached an image here. Clearly, there are two values of x that satisfy the equation in the range. Do I need to add anything to this statement, I feel the response is a little brief for the question?

b. Using the trigonometric identities;
tan x=sin x / cos x
and sin^2x+cos^2x=1

2cos x=tan x
Multiply the whole equation by cos x:
2cos x=sinx
Using the identity sin^2x+cos^2x=1, 2cos x becomes: 2(1-sin^2x)
2(1-sin^2x)=sinx
Expand the brackets;
2-2sin^2x=sinx
Subtract sin x from both sides;
2-2sin^2x-sinx=0
Divide by -1;
2sin^2x+sinx-2=0

c. To solve the equation 2cos x=tan x
This is shown to be equal to the quadratic;
2sin^2x+sinx-2=0

Let sin x = u
2u^2+u-2=0

Using the quadratic formula; a=2, b=1, c=-2
u=-b±√b^2-4ac/2a
u=-1±√1^2-4*2*(-2)/2*2
u=-1±√17/4
u=0.780 and x=-1.28 to 3.s.f

sin x = -1±√17/4
x=arcsin 0.78 =51.3 degrees to 3.s.f
x= arcsin -1.28 = no real solutions as x cannot be smaller than 1 for real solutions

To find other solutions in the range 0 ≤θ ≤360 degrees use sin θ=sin(180-θ):
180-51.3=128.7 degrees

So the solutions are 51.3 and 129 degrees to 3.s.f?

Would this be correct. I am very uncertain of trigonometric equation problems and I have been teaching myself which is perhaps why my knowledge is a little unstable and I am am sure in places erroneous. I would be very grateful of any help 👍
 

Attachments

  • question 1 a.png
    question 1 a.png
    19 KB · Views: 193
  • question 1 b.png
    question 1 b.png
    23.3 KB · Views: 199
  • question 1 c.png
    question 1 c.png
    14.7 KB · Views: 177
  • Question 2 a.png
    Question 2 a.png
    33.8 KB · Views: 197
Physics news on Phys.org
Your post is quite long, with two questions with three parts each. Few members will want to wade through all of your work and comment on it.

I am closing this thread. Please repost questions 1 and 2 in separate threads. In the future, please limit your posts to one question with up to three parts.
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
Replies
13
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K