MHB Triple integral, spherical coordinates

Click For Summary
The discussion focuses on understanding the limits of integration for a triple integral in spherical coordinates. The user is confused about how the limits for theta were derived, specifically the range $$\frac{\pi}{4} \leq \theta \leq \frac{\pi}{2}$$. A hint provided indicates that the relationship between z, x, and y leads to the conclusion that $$z=\frac{\sqrt{2}}{2}$$ corresponds to $$\theta=\frac{\pi}{4}$$. The spherical coordinates are defined with the ranges for r, theta, and phi, clarifying the integration limits for the region D. The discussion emphasizes the importance of correctly interpreting the geometric relationships in spherical coordinates.
Petrus
Messages
702
Reaction score
0
Hello MHB,
1y4d39.jpg

So when I change to space polar I Dont understand how facit got $$\frac{\pi}{4} \leq \theta \leq \frac{\pi}{2}$$
Regards,
$$|\pi\rangle$$

$$\int\int\int_D(x^2y^2z)dxdydz$$
where D is $$D={(x,y,z);0\leq z \leq \sqrt{x^2+y^2}, x^2+y^2+z^2 \leq 1}$$
 
Last edited:
Physics news on Phys.org
Re: Triple integral, spherical cordinates

Hint:
$$\left \{ \begin{matrix} z=\sqrt{x^2+y^2}\\x^2+y^2+z^2=1\end{matrix}\right.\Rightarrow \left \{ \begin{matrix} z^2=x^2+y^2\\x^2+y^2+z^2=1\end{matrix}\right. \Rightarrow 2z^2=1\Rightarrow z=\frac{\sqrt{2}}{2}$$
 
Re: Triple integral, spherical cordinates

Could you please re-post the original problem? The tinypic image is not showing up for me.
 
Re: Triple integral, spherical cordinates

Fernando Revilla said:
Hint:
$$\left \{ \begin{matrix} z=\sqrt{x^2+y^2}\\x^2+y^2+z^2=1\end{matrix}\right.\Rightarrow \left \{ \begin{matrix} z^2=x^2+y^2\\x^2+y^2+z^2=1\end{matrix}\right. \Rightarrow 2z^2=1\Rightarrow z=\frac{\sqrt{2}}{2}$$
$$z=\cos(\theta)P$$
what happened to P? I am somehow unsure with geting the integral limit

Regards,
$$|\pi\rangle$$
 
Re: Triple integral, spherical cordinates

Using the spherical coordinates:
$$P(r,\theta,\varphi)\qquad (0\leq r <+\infty,\;0\leq \varphi \leq 2\pi,\;0\leq \theta \leq \pi),$$
the equality $\sqrt{2}/2=1\cos \theta$ implies $\theta=\pi/4,$ so:
$$D\equiv \left \{ \begin{matrix} 0\leq \varphi \leq 2\pi& \\\pi/4\leq \theta\leq \pi/2\\0\leq r\leq 1\end{matrix}\right.$$
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
4K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K