Triple integral, spherical coordinates

Click For Summary
SUMMARY

The discussion centers on evaluating a triple integral using spherical coordinates. The region of integration, defined as $$D={(x,y,z);0\leq z \leq \sqrt{x^2+y^2}, x^2+y^2+z^2 \leq 1}$$, leads to the conclusion that the limits for the angle $$\theta$$ are $$\frac{\pi}{4} \leq \theta \leq \frac{\pi}{2}$$. This is derived from the relationship $$z=\cos(\theta)P$$ and the condition $$\sqrt{2}/2=1\cos \theta$$, which directly yields $$\theta=\frac{\pi}{4}$$. The spherical coordinates used are defined as $$P(r,\theta,\varphi)$$ with specific ranges for $$r$$, $$\theta$$, and $$\varphi$$.

PREREQUISITES
  • Spherical coordinates in calculus
  • Understanding of triple integrals
  • Knowledge of polar coordinates
  • Familiarity with mathematical notation and inequalities
NEXT STEPS
  • Study the conversion between Cartesian and spherical coordinates
  • Learn about the applications of triple integrals in physics
  • Explore the use of Jacobians in changing variables for multiple integrals
  • Investigate the geometric interpretation of spherical coordinates
USEFUL FOR

Students and professionals in mathematics, physics, and engineering who are working with multivariable calculus and need to understand the application of spherical coordinates in triple integrals.

Petrus
Messages
702
Reaction score
0
Hello MHB,
1y4d39.jpg

So when I change to space polar I Dont understand how facit got $$\frac{\pi}{4} \leq \theta \leq \frac{\pi}{2}$$
Regards,
$$|\pi\rangle$$

$$\int\int\int_D(x^2y^2z)dxdydz$$
where D is $$D={(x,y,z);0\leq z \leq \sqrt{x^2+y^2}, x^2+y^2+z^2 \leq 1}$$
 
Last edited:
Physics news on Phys.org
Re: Triple integral, spherical cordinates

Hint:
$$\left \{ \begin{matrix} z=\sqrt{x^2+y^2}\\x^2+y^2+z^2=1\end{matrix}\right.\Rightarrow \left \{ \begin{matrix} z^2=x^2+y^2\\x^2+y^2+z^2=1\end{matrix}\right. \Rightarrow 2z^2=1\Rightarrow z=\frac{\sqrt{2}}{2}$$
 
Re: Triple integral, spherical cordinates

Could you please re-post the original problem? The tinypic image is not showing up for me.
 
Re: Triple integral, spherical cordinates

Fernando Revilla said:
Hint:
$$\left \{ \begin{matrix} z=\sqrt{x^2+y^2}\\x^2+y^2+z^2=1\end{matrix}\right.\Rightarrow \left \{ \begin{matrix} z^2=x^2+y^2\\x^2+y^2+z^2=1\end{matrix}\right. \Rightarrow 2z^2=1\Rightarrow z=\frac{\sqrt{2}}{2}$$
$$z=\cos(\theta)P$$
what happened to P? I am somehow unsure with geting the integral limit

Regards,
$$|\pi\rangle$$
 
Re: Triple integral, spherical cordinates

Using the spherical coordinates:
$$P(r,\theta,\varphi)\qquad (0\leq r <+\infty,\;0\leq \varphi \leq 2\pi,\;0\leq \theta \leq \pi),$$
the equality $\sqrt{2}/2=1\cos \theta$ implies $\theta=\pi/4,$ so:
$$D\equiv \left \{ \begin{matrix} 0\leq \varphi \leq 2\pi& \\\pi/4\leq \theta\leq \pi/2\\0\leq r\leq 1\end{matrix}\right.$$
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 1 ·
Replies
1
Views
3K