Hello, tavi_boada. Tell me if this helps.
------------------------------------
Consider a nondegenerate hermitian operator A which corresponds to an observable of some dynamical attribute of the quantum system. Let A have eigenvectors |n> and corresponding eigenvalues a(n), where n = 1,2, ... . Write A as
A = Sigma_n { a(n)|n><n| } .
The numbers a(n) correspond to possible measured values of a dynamical attribute of the system. As such, they are necessarily real numbers. On the other hand, nothing stops me from going to the "pointer" of the measuring device and changing the numbers which the "pointer" points at. Let's say I take a(n) --> b(n) in a one-to-one fashion. I then have a new operator
B = Sigma_n { b(n)|n><n| } .
The newly obtained measuring device is a "real physical device", and, in that sense, the associated operator B corresponds to something "measurable". However, the numbers b(n) may not represent possible values of a dynamical attribute of the system, as did the original a(n). In particular, the b(n) can even be complex numbers.
Now, since the values of the dynamical attributes of physical systems are necessarily real numbers, and the physical quantities which we measure are necessarily real-valued functions of those numbers, the term "observable" has been reserved for an operator which necessarily has real eigenvalues. This means that, while our operator B above, with complex b(n), does in some sense correspond to something "measurable", it is not an "observable".