Trouble seeing the difference between autograder answer and my own

  • Thread starter Thread starter ago01
  • Start date Start date
  • Tags Tags
    Difference
ago01
Messages
46
Reaction score
8
Homework Statement
Integrate ##\frac{1}{\sqrt{x^2-49}}dx##
Relevant Equations
Trig sub, secant.
I was doing a practice quiz and got the following integral:

##\int \frac{1}{\sqrt{x^2-49}}dx##

Following normal trig sub. Using ##b^2 = c^2 - a^2## we find ##\sec{\theta} = \frac{x}{5}## and so ##x = 5\sec{\theta}## and ##dx = 5\sec{\theta}\tan{\theta}d\theta##

Then

## \int \frac{1}{\sqrt{x^2-49}}dx = 5 \int \frac{\sec{\theta}\tan{\theta}d\theta}{\tan{\theta}}##

Then after simplification:

##\int \sec{\theta}d\theta = ln|\sec{\theta} + \tan{\theta}| + C##

and solving for theta using the triangle:

## ln|\frac{x}{7} + \frac{\sqrt{x^2-49}}{7}| + C ##

The autograder marked me wrong. The correct answer was:

##ln|\frac{1}{7}(\sqrt{x^2-49} + x)| + C##

Which looks to be the same to me. I cannot see the difference. Even the plots look the same. I must be forgetting a property of logs that makes these distinct. Can you help me?
 
Physics news on Phys.org
I'm assuming an autograder is some software? If so, its answer looks neater to me, but the answers are clearly equivalent.
 
Some autograders are just ... sub-par ...
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top