Trouble with deducing the contradiction

  • Thread starter Thread starter tt2348
  • Start date Start date
  • Tags Tags
    Contradiction
tt2348
Messages
141
Reaction score
0
Let x,y,z be integers satisfying a specific condition, which boils down to
5|(x+y-z) and 2*5^{4}k=(x+y)(z-y)(z-x)((x+y)^2+(z-y)^2+(z-x)^2)
or equivalently 5^{4}k=(x+y)(z-y)(z-x)((x+y-z)^2-xy+xz+yz)
I want to show that GCD(x,y,z)≠1, starting with the assumption 5 dividing (x+y), (z-y), or (z-x) results in x,y or z being divisible by 5. then it's easy to show that 5 divides another term, implying 5 divides all three.
I run into trouble assuming 5 divides the latter part, 2((x+y)^2+(z-y)^2+(z-x)^2)=((x+y-z)^2-xy+xz+yz) and showing the contradiction from that point.
Any hints?
 
Physics news on Phys.org
Suppose 5 | a2+b2+c2. Each term individually must be 0, 1 or 4 mod 5. The only ways for three such to add to 0 mod 5 involve at least one of them being 0 mod 5, no?
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...

Similar threads

Back
Top