Vic Sandler
- 2
- 3
I tried to derive eqn (9.94) on page 192 of the second edition of Mandl and Shaw QFT and failed. Can someone help me see what I am doing wrong?
Ignoring factors that do not change from eqn (9.92) to eqn (9.94), noting that f(k) has been set to 1, and dropping terms linear in k and k squared as described in the text, I get:
\frac{\gamma^{\alpha}(\not{p'}+m)\gamma^{\mu}(\not{p}+m)\gamma_{\alpha}}{((p'-k)^2 - m^2)((p-k)^2 - m^2)}
= \gamma^{\mu}\frac{(-2p'p)}{(-2p'k)(-2pk)} + \frac{4m(p' + p)^{\mu}}{(-2p'k)(-2pk)} + \gamma^{\mu}\frac{(-2m^2)}{(-2p'k)(-2pk)}
The first term on the right hand side is the same as in the book, but divided by -2. Perhaps the other two terms combine in some way to fix it up, but I don't see it. I also don't see what terms are meant by the author when he says "the dots indicate terms which are finite in the limit \lambda \rightarrow 0" since none of the terms involve \lambda.
Ignoring factors that do not change from eqn (9.92) to eqn (9.94), noting that f(k) has been set to 1, and dropping terms linear in k and k squared as described in the text, I get:
\frac{\gamma^{\alpha}(\not{p'}+m)\gamma^{\mu}(\not{p}+m)\gamma_{\alpha}}{((p'-k)^2 - m^2)((p-k)^2 - m^2)}
= \gamma^{\mu}\frac{(-2p'p)}{(-2p'k)(-2pk)} + \frac{4m(p' + p)^{\mu}}{(-2p'k)(-2pk)} + \gamma^{\mu}\frac{(-2m^2)}{(-2p'k)(-2pk)}
The first term on the right hand side is the same as in the book, but divided by -2. Perhaps the other two terms combine in some way to fix it up, but I don't see it. I also don't see what terms are meant by the author when he says "the dots indicate terms which are finite in the limit \lambda \rightarrow 0" since none of the terms involve \lambda.