I Trying to solve the restricted two-body problem

  • I
  • Thread starter Thread starter tomwilliam2
  • Start date Start date
AI Thread Summary
The discussion focuses on solving the restricted two-body problem using the equation of motion and angular momentum conservation. A key point is the transformation from the radial distance r to the variable u = 1/r, which simplifies the equations. The conservation of angular momentum leads to the derivation of the Runge-Lenz vector, which helps in determining the shape of the orbit. The final result is expressed in terms of polar coordinates, revealing that orbits can be conic sections depending on the eccentricity. The participants emphasize the importance of understanding these concepts thoroughly for solving the problem effectively.
tomwilliam2
Messages
117
Reaction score
2
I'm just trying to solve the restricted two-body problem mentioned in passing in my textbook:

##\mathbf{\ddot{r}}+\frac{GM}{r^2}\left(\frac{\mathbf{r}}{r}\right)=\mathbf{0}##

I understand the way to do it is to take the cross-product with the constant angular momentum ##\mathbf{h}## then integrate wrt time:

##\mathbf{\dot{r} \times h}= -\frac{GM}{r^2}\int \left(\frac{\mathbf{r}}{r}\right)\mathbf{\times h}\ dt##

But I'm not sure what to do next. Can I use the fact that ##\mathbf{h}=\mathbf{r \times \dot{r}}## to make it:

##\mathbf{\dot{r} \times h}= -\frac{GM}{r^2}\int \left(\frac{\mathbf{r}}{r}\right)\mathbf{\times r \times \dot{r}}\ dt##
Can anyone help?
The answer I'm trying to get to is:
##\mu\left(\frac{\mathbf{r}}{r} + \mathbf{e}\right)##, where ##\mathbf{e}## is a constant vector of integration and presumably ##\mu## is some constant related to G.
 
Physics news on Phys.org
Hi,

After you manage to use the angular momentum conservation, you need to do variable change from r to u = 1/r.
Also there are many online texts which solve this problem.

BR,
Ohad
 
Thanks. The problem I'm having is that the cross product of a vector with itself is zero, so I seem to get 0 in the integrand. Actually, I think the ##r^{-2}## term I factored out should also be in there, but that would still give me an integrand of:
##\int \frac{\mathbf{r \times r\times \dot{r}}}{r^3} dt##
Isn't the inside of the integrand then zero?
 
It's simpler to work with differential equations. Starting from your EoM
$$\ddot{\vec{r}}=-\frac{G M}{r^3} \vec{r},$$
you can very easily derive the conservation of angular momentum (here everything is divided by ##m##, the mass of the "test particle"):
$$\vec{r} \times \ddot{\vec{r}}=0.$$
But on the other hand
$$\frac{\mathrm{d}}{\mathrm{d} t} (\vec{r} \times \dot{\vec{r}})=\dot{\vec{r}} \times \dot{\vec{r}} + \vec{r} \times \ddot{\vec{r}}=\vec{r} \times \ddot{\vec{r}}.$$
Thus you have with ##\vec{h}=\vec{r} \times \dot{\vec{r}}##
$$\dot{\vec{h}}=0 \; \Rightarrow \; \vec{h}=\text{const}.$$
For ##\vec{h} \neq 0## it's clear that the motion is in a plane perpendicular to ##\vec{h}##. The standard way to proceed further is to use the conservation of energy as a 2nd first integral and solve for the orbit ##r=r(\phi)##, where ##r## and ##\phi## are polar coordinates in the plane.

Obviously your textbook follows another very elegant way, using the huge symmetry of the Kepler problem. The point is that for the ##1/r## potential there is an extra symmetry, which leads to another conserved vector, the Runge-Lenz vector in the plane of motion. To derive it we use
$$\frac{\mathrm{d}}{\mathrm{d} t} (\dot{\vec{r}} \times \vec{h})=\ddot{\vec{r}} \times \vec{h}=-\frac{GM}{r^3} \vec{r} \times \vec{h} \qquad (*).$$
On the other hand we have
$$\frac{\mathrm{d}}{\mathrm{d} t}=\frac{\vec{r}}{r} = \frac{r \dot{\vec{r}}-\dot{r} \vec{r}}{r^2}.$$
Now we have (check it!)
$$\dot{\vec{r}} = \frac{\mathrm{d}}{\mathrm{d} t} \sqrt{\vec{r} \cdot \vec{r}}=\frac{\vec{r} \cdot \dot{\vec{r}}}{r}=-\frac{\vec{r} \times \vec{h}}{r^3}.$$
Multiplying with ##GM## and subtracting from (*) you get
$$\frac{\mathrm{d}}{\mathrm{d} t} \left [\dot{\vec{r}} \times \vec{h} - G M \frac{\vec{r}}{r} \right]=0,$$
i.e., the Runge-Lenz vector
$$\vec{e}= \dot{\vec{r}} \times \vec{h} - G M \frac{\vec{r}}{r}=\text{const} \qquad(**).$$
From this it's very easy to find the shape of the orbit by introducing polar coordinates in the orbital plane with ##\vec{e}## as the polar axis. Multiplying (**) with ##\vec{r}## you get
$$\vec{r} \cdot \vec{e} = r e \cos \varphi.$$
On the other hand from the definition of the Runge-Lenz vector) you have
$$\vec{r} \cdot \vec{e} = \vec{r} \cdot (\dot{\vec{r}} \times \vec{h})-GM r = (\vec{r} \times \dot{\vec{r}}) \cdot \vec{h} - G M r =h^2-G M r.$$
Together with the previous equation you find
$$r=\frac{h^2}{GM+e \cos \varphi}=\frac{h^2/(GM)}{1+e/(GM) \cos \varphi}.$$
This is a conic section with the excentricity ##\epsilon=e/(GM)##, i.e., an ellipse for ##0<\epsilon<1##, a circle for ##\epsilon=0##, a parabola for ##\epsilon=1##, and a hyperbola for ##\epsilon>1##.
 
  • Like
Likes tomwilliam2
Thanks, that's an awesome answer. I'm going to come back to it to work through properly, and make sure I understand it fully.
Thanks for taking the time out.
 
Thread 'Question about pressure of a liquid'
I am looking at pressure in liquids and I am testing my idea. The vertical tube is 100m, the contraption is filled with water. The vertical tube is very thin(maybe 1mm^2 cross section). The area of the base is ~100m^2. Will he top half be launched in the air if suddenly it cracked?- assuming its light enough. I want to test my idea that if I had a thin long ruber tube that I lifted up, then the pressure at "red lines" will be high and that the $force = pressure * area$ would be massive...
I feel it should be solvable we just need to find a perfect pattern, and there will be a general pattern since the forces acting are based on a single function, so..... you can't actually say it is unsolvable right? Cause imaging 3 bodies actually existed somwhere in this universe then nature isn't gonna wait till we predict it! And yea I have checked in many places that tiny changes cause large changes so it becomes chaos........ but still I just can't accept that it is impossible to solve...
Back
Top