Trying to understand Levi-Civita Symbol and notation

AI Thread Summary
The discussion centers around the understanding of the Levi-Civita symbol, particularly its values and how it relates to summations involving indices. The symbol can take values of 1, -1, or 0 based on permutations of indices, but confusion arises when summations include additional indices like m and n. It is clarified that in a summation from i=1 to 3, the indices j and k are fixed, meaning they do not vary in that context. The product of two Levi-Civita symbols can represent a determinant, and the values of j and k must be known to determine the symbol's value accurately. Overall, the discussion emphasizes the need for clarity in understanding how the Levi-Civita symbol operates within different dimensions and summation contexts.
Werbel22
Messages
8
Reaction score
0
Hello,

I am having a little difficulty understanding what exactly the Levi-Civita symbol is about.

In the past I believed that it was equal to 1, -1 and 0, depending on the number of permutations of i,j,k. I had just accepted that to be the extent of it.

However, now I am seeing things like summations with i,j,k mentioned as WELL as other letters, for example m and n in the link below. I tried reading online about it to understand what exactly it is, especially here:

http://en.wikipedia.org/wiki/Levi-Civita_symbol#Relation_to_Kronecker_delta

How can something that is the value of -1, 1 or 0 be written as a sum, with i=1 up to 3 as written in the link, without any mention of the values of j or k? Whenever I see summation, I think substitute i=1 first, then add with i=2, then add the value with i=3, and that's the answer. But if it's E_ijk E_imn, if I sub into the 'contracted epsilon identity' as shown on wikipedia I get

E_1jk E_1mn + E2jk E_2mn + E3jk E_3mn

How do I know what to do with the levi-civita symbol if I don't know what to with all these other letters?

What does this expression even mean? :S

Sorry for my lack of knowledge here, I haven't had much experience ever using it and I'm worried I'll fall behind in class if I don't get this cleared up.

Thanks!
 
Mathematics news on Phys.org
Werbel22 said:
… However, now I am seeing things like summations with i,j,k mentioned as WELL as other letters, for example m and n in the link below. I tried reading online about it to understand what exactly it is, especially here:

http://en.wikipedia.org/wiki/Levi-Civita_symbol#Relation_to_Kronecker_delta

How can something that is the value of -1, 1 or 0 be written as a sum, with i=1 up to 3 as written in the link, without any mention of the values of j or k? Whenever I see summation, I think substitute i=1 first, then add with i=2, then add the value with i=3, and that's the answer. …

Hello Werbel22! :smile:

i=1 up to 3 is only for three dimensions.

For the generalisation to n dimensions, i = 1 to n.

The product of two Levi-Civita symbols in n dimensions is given later on that page, as a determinant.

The ∑ with i=1 up to 3 as written in the link is for fixed values of j k m and n (so the RHS is a function of j k m and n) … there's no summing over j and k because they're fixed. :wink:
 
So then what is the value of the levi-civita symbol then? I only know it to be -1, 1, 0, and I thought you need to know about j and k as well to find it's value?
 
?? :confused: if j and k are given, then you do know their values.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top