- #1

- 21

- 0

Hi, thanks to a different thread/question on this forum I've come to appreciate time dilation ..somewhat. And from that I wondered if, given the range of locally measured times aboard any and all particles in the universe, given their different trajectories and histories since the big bang ..wouldn't, when they coalesce, form a normally distributed bell curve of time passed clocks? ...And wouldn't then the decay likeyhood of each of these (imagine we're considering some particular radioactive element) well wouldn't the half life calculation/radioactive -ness of such stuff be a function of each atom's clocks ...or of that time passed distribution ? So, does a normal distribution of times passed for each atom, in a radioactive element, generate the observed decay curve?

I found this but ...it's over my head. (http://www.umich.edu/~ners311/CourseLibrary/bookchapter13.pdf)

But if this is true is there not a case to generalise it further and make some argument that the stochastic nature of quantum dynamics isn't a random - utterly unpredictable albeit normally distributed thing but is actually a function of the relative age of subatomic particles or the age of quarks? ..Thank you for any thoughts or guidance.

I found this but ...it's over my head. (http://www.umich.edu/~ners311/CourseLibrary/bookchapter13.pdf)

But if this is true is there not a case to generalise it further and make some argument that the stochastic nature of quantum dynamics isn't a random - utterly unpredictable albeit normally distributed thing but is actually a function of the relative age of subatomic particles or the age of quarks? ..Thank you for any thoughts or guidance.

Last edited: