Two objects are dropped from a bridge

  • Thread starter Thread starter alksjadf
  • Start date Start date
  • Tags Tags
    Bridge
AI Thread Summary
Two objects dropped from a bridge, one second apart, maintain a constant separation due to equal acceleration from gravity, which is -9.8 m/s². The discussion raises questions about when the velocities of the two objects might equalize and the implications for their relative positions. In a separate problem, car A, initially 300 meters behind car B, accelerates at 1.8 m/s² while car B travels at a constant speed of 25 m/s. Participants suggest using kinematic equations to solve for the time it takes for car A to overtake car B, with varying answers presented. Clarifications about the acceleration value and the relative speeds of the cars are also discussed, indicating confusion among participants.
alksjadf
Messages
36
Reaction score
0

Homework Statement


two objects are dropped from a bridge, an interval of 1sec apart during the time that both objects continue to fall their separation______


Homework Equations





The Attempt at a Solution


I thought it was stays the same but someone said it wasn't so my next guess would be closer.


And second question:
car A is traveling at 18m/s and car B at 25m/s Car A is 300m behind car B when the driver of Car A accelerates his car with an acceleration of 1.80 to the power of 2 how long does it take car A to overtake car B

Attempt of solving:
I think the actual answer is 22.54 that's what someone said but i really don't know. If 22.54 please show the work and if not help me out.

Thanks
alksjadf
 
Last edited:
Physics news on Phys.org
Both objects undergo the same acceleration due to gravity -9.8 m/s^2.
When, if ever, does the velocity of the first object catch up to the velocity of the second? Thus, what can you say about the relative positions of the objects?

For the second question, assume car B is traveling at 0 m/s relative to car A. How fast is car A going?
Now, use general kinematics equations.
Is the acceleration 1.8 m/s^2 or 1.8^2 = 3.24 m/s^2?
 
sorry i typed it wrong it's 1.8m/s^2 and for number one would it be decreases.

Also, my cousin got 36.83
 
Last edited:
Think about that answer. Is the second object ever going faster than the first one?
 
if you have AIM please IM me at madmonkey924 because I'm so lost on both
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top