Determining Basis and Coordinates in Two-Dimensional Space

  • Thread starter Thread starter winston2020
  • Start date Start date
  • Tags Tags
    2d Space Vectors
Click For Summary
The discussion revolves around determining if the vectors V1 = (1, 2) and V2 = (3, 5) form a basis for two-dimensional space and finding the coordinates of V = (8, 7) relative to this basis. It is established that the vectors are not collinear, indicating they can define any vector in two-dimensional space. The coordinates of V relative to the basis are expressed as V = aV1 + bV2, leading to a system of equations. After some initial confusion and incorrect calculations, the correct approach involves substituting values to solve for a and b accurately. Ultimately, the correct solution is confirmed, resolving the initial misunderstanding.
winston2020
Messages
35
Reaction score
0
Question: Determine whether the following sets of vectors form bases for two-dimensional space. If a set forms a basis, determine the coordinates of V = (8, 7) relative to this base.

a) V1 = (1, 2), V2 = (3, 5).


On the first part of the question, I'm a little foggy on how I go about doing it.. I think I have to figure out if they're collinear right? And if they're not, then they can be used to define any other vector in two-dimensional space... is that right?

And so, if that's the case (I believe that they are not collinear), then how do I determine the coordinates of V = (8, 7)? Is it simply a matter of determining the end point of V relative to the base of V1, and V2 with the tails together?
 
Physics news on Phys.org
In this case the problem is indeed whether or not they are collinear, but more generally the problem is to figure out whether they are independent. As for finding the coordinates of V relative to that basis, what do coordinates mean? The coordinates are two numbers a and b such that

V=aV1+bV2

But if you write this out, it is just a system of two equations in two unknowns, which you should be able to solve.
 
DeadWolfe said:
In this case the problem is indeed whether or not they are collinear, but more generally the problem is to figure out whether they are independent. As for finding the coordinates of V relative to that basis, what do coordinates mean? The coordinates are two numbers a and b such that

V=aV1+bV2

But if you write this out, it is just a system of two equations in two unknowns, which you should be able to solve.

Thank you. Given what you said, this is what I did:

V = aV1 + bV2
(8, 7) = a(1, 2) + b(3, 5)

Therefore:
8 = a + 3b
7 = 2a + 5b

After solving: a = -(19 / 5), and b = -(38 / 25).

The answer in the book simply says "Yes. (-19, 9)" Can anyone tell me what I'm missing, what I've done wrong here (maybe I just solved a, and b wrong...)?
 
You solved the system wrong. Try substituting a = 8 - 3b into the second equation.
 
Vid said:
You solved the system wrong. Try substituting a = 8 - 3b into the second equation.

:redface: Thanks. The first time I tried substituting b = (7-2(-19/5))/5 into a = 8 - 3b... I just screwed up the fractions. It's all good now though. Thanks everyone :smile:
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
Replies
4
Views
2K
  • · Replies 9 ·
Replies
9
Views
4K
  • · Replies 6 ·
Replies
6
Views
3K
Replies
34
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 17 ·
Replies
17
Views
4K