George H. Miley is working on this area along with Holmid...
Ultrahigh-density deuterium of Rydberg matter clusters for inertial confinement fusion targets
http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=6056192
Clusters of condensed deuterium of densities up to 10^29 cm−3 in pores in solid oxide crystals were confirmed from time-of-flight mass spectrometry measurements. Based on these facts, a schematic outline and possible conclusions of expectable generalizations are presented, which may lead to a simplification of laser driven fusion energy including new techniques for preparation of targets for application in experiments of the NIF type, but also for modified fast igniter experiments using proton or electron beams or side-on ignition of low compressed solid fusion fuel.
"Ultra high density deuterium clusters for low energy nuclear reactions"
http://abstracts.acs.org/chem/239nm/program/view.php?obj_id=10048&terms=
"Our low energy nuclear reaction research (LENR) has embedded ultra high density deuterium “clusters” (D cluster) in Palladium (Pd) thin films. These clusters approach metallic conditions, exhibiting super conducting properties. [1] They represent “nuclear reactive sites” needed for LENR. The resulting reactions are vigorous, giving the potential for a high power density cell. Clusters are achieved through electrochemically loading-unloading deuterium into a thin metal palladium film creating local defects which form a strong potential trap where deuterium condenses into “clusters” of ~100 atoms. Research now focuses on nano-manufactured structures to achieve a high volumetric density of these trap sites. Alternately condensed deuterium inverted Rydberg 2.3-pm deuteron spacing is being studied. [2]
---
This parallels Arata's work, in which he speaks of "pynco-deuterium lumps" and "solid deuterium" at room temperature in lattices
http://scholar.google.com/scholar?hl=en&q=arata+deuterium
http://www.journalarchive.jst.go.jp/english/jnlabstract_en.php?cdjournal=pjab1977&cdvol=78&noissue=3&startpage=57
"It seems that nuclear fusion in solid (“solid fusion”) takes place in the highly condensed “deuterium-lump”inside each unit cell of the“metallic deuterium lattice” (or mixed hydrogen one) which is formed inside each cell of the host metal lattice. It is considered, therefore, that each unit cell of the host lattice corresponds to minimum units of “solid fusion reactor”. In order to achieve “solid fusion”, just the generation of the ultrahigh density “deuterium-lump” (simply “pycnodeuterium-lump”) coagulated locally inside unit cell of the host lattice and/or the highly condensed metallic deuterium lattice should be an indispensable condition.
---
And Dufour's work, in which he speaks of "hydrex" and "deutex", "shrunken hydrogen atoms" like hydrinos, and clusters of the "hydrex" and "deutex", which sounds very much like Rydberg matter
http://scholar.google.com/scholar?hl=en&q=dufour+hydrex
"The Hydrex Hypothesis - It has been shown by a quantum electrodynamics calculation 21 that resonances of longlifetime (seconds), nuclear dimensions (femtometres), and low energy of formation(electron volts) could exist. This concept seems to look like the “shrunken hydrogen atoms” proposed by various authors. 22,23 It is indeed very different in two ways: Being a metastable state, it needs energy to be formed (a few electron volts) and reverts to normal hydrogen after a few seconds, liberating back its energy of formation (it is thus not thesource of the energy observed). Its formation can be described as the electron spin-proton nuclear spin interaction becoming first order in the lattice environment (whereas, it is third order in a normal hydrogen atom). A concept similar to Ref. 21, but yielding a stable state has been developed. 24 The corresponding copious emission of X rays thatshould have been observed to explain the measured energies of reaction were notdetected. Note that in Ref. 19 a concept is given of a shrunken atom, solidly based on a plasma dielectric explanation. The high electron concentration, in the swimming electronlayer at metal interfaces, 19 invoked to increase the screening factor, could also favor the synthesis of hydrex. Moreover, we consider that the hydrex cannot yield a neutron because this reaction is strongly endothermic. To explain our results we put forward thefollowing working hypothesis: in a metal lattice and under proper conditions, the formation of such resonances (metastable state) could be favored. We propose to call them hydrex, and we assume that they are actually formed in CF and LENR experiments.
The Action of Hydrex on a Nucleus of the Lattice - Once formed, a number of hydrex could gather round a nucleus of the lattice to form a cluster of nuclear size and of very long lifetime compared to nuclear time (10 -22 s). They are likely be polarized by the electrostatic potential of the nucleus. The cluster can thus be described as a nucleus, surrounded at nuclear distance, first by a negative layer (the electrons of all the hydrex of the cluster) and then by a positive layer (the protons of these hydrex). The formation of the cluster would result in all hydrex involved transferring their kinetic energy to the nucleus, which would thus be in an excited state. In this excited cluster, nuclear rearrangements could take place, yielding mainly 4 He, nuclei of atomic masses smaller than that of the host metal, and small amounts of 3 He and tritium. Because this nuclear rearrangement is a many body reaction, the products formed should be stable products in their ground states, with most of the reaction energy being carried away as kinetic energy by the alpha particles formed. The inevitable excess of neutrons would react with the surrounding hydrex protons to yield mainly 4 He and small amounts of 3 He and 3 H. This last point is a general feature of hydrex catalyzed reactions. It explains why their energies of reaction are always higher than those of the corresponding fission reaction: The energy generated by the combination of the protons of the hydrex with the excess neutrons (resulting from the fission of the nucleus) to yield 4 He adds to the energy of fission. Figure 9 (Ref. 27) is a “common sense” illustration of this bound state, which looks very much like a nuclear-molecular state, 28 with the neutrons acting like the covalent bounding of electrons observed in chemical molecules."
---
Theoretical explanations for the new, dense state of deuterium Rydberg matter are already being put forward:
"Ultradense Deuterium"
http://arxiv.org/ftp/arxiv/papers/0912/0912.5414.pdf
"An attempt is made to explain the recently reported occurrence of ultradense deuterium as an isothermal transition of Rydberg matter into a high density phase by quantum mechanical exchange forces. It is conjectured that the transition is made possible by the formation of vortices in a Cooper pair electron fluid, separating the electrons from the deuterons, with the deuterons undergoing Bose-Einstein condensation in the core of the vortices. If such a state of deuterium should exist at the reported density of about 130,000 g/cm3, it would greatly facility the ignition of a thermonuclear detonation wave in pure deuterium, by placing the deuterium in a thin disc, to be ignited by a pulsed ultrafast laser or particle beam of modest energy... The existence of Rydberg matter was in 1980 first predicted by E.A. Manykin, Ozhovan and Puluektov [1]. But it was a research group in Sweden at University of Gothenburg, under the leadership of Leif Holmlid, which has recently announced it had discovered an ultradense form of deuterium by a phase transition from a Rydberg matter state of deuterium, a million times more dense than liquid deuterium [2]. Because this claim is so extraordinary, it must be taken with a great deal of skepticism. But since Leif Holmlid has an established record of publications about Rydberg matter in the refereed scientific literature the claim cannot be easily dismissed. It is the purpose of this communication to explore the question if such an unusual state of matter might exist."
---
The above paper also says "this points into the direction of a large effective mass for the electrons, possible if the electron fluid forms vortices, because vortices have a large effective mass." The concept of a large effective electron mass for dense deuterium has been a recurring theme...
http://www.springerlink.com/content/53q473g61w333164/
A possible mechanism for the occurrence of nuclear fusion at room temperature is presented. Neutralization of the positive charge of the deuteron nucleus by its orbiting electron due to large enhancement of effective mass results in the vanishing of the Coulomb barrier which facilitates fusion at room temperature.
http://www.askmar.com/Robert%20Bussard/Metal%20Lattice%20Fusion.pdf
A model of deuterium-deuterium fusion in metal lattices presented based on two phenomena:
a) reactions between virtual-state pairs of deuterons “bound” by electrons of high effective mass m* and
b) deuterium energy upscattering by fast ions from fusion or tritium reactions with virtual state nuclear structure groups in palladium nuclei.
---
The "Cold Fusion Battery" bears a lot of resemblance to metal hydride energy generation systems Randell Mills is working on at Blacklight Power (http://www.blacklightpower.com/new.shtml )...
Researcher Describes Conceptual Cold Fusion “Battery”, or Small Power Unit
http://www.greencarcongress.com/2010/03/miley-20100322.html#more
Some more on Miley's metal hydride based "Proton Reaction Cell" concept, sounds a lot like Mills' prototypes in a number of respects...
http://books.google.com/books?id=0-_QTYWBFvYC&pg=PA474&dq=proton+reaction+cell&cd=1
May explain anomalous spectral lines in interstellar gas, as claimed by hydrinos:
L. Holmlid, "Amplification by stimulated emission in Rydberg Matter clusters as the source of intense maser lines in interstellar space". Astrophys. Space Sci. 305 (2006) 91-98.
May be a type of dark matter, as claimed by hydrinos:
Badiei, Shahriar; Holmlid, Leif (2002). "Rydberg matter in space: low-density condensed dark matter". Monthly Notices of the Royal Astronomical Society 333: 360. doi:10.1046/j.1365-8711.2002.05399.x.
Has been found in the upper atmosphere of planets.
L. Holmlid, "The alkali metal atmospheres on the Moon and Mercury: explaining the stable exospheres by heavy Rydberg Matter clusters". Planetary Space Sci. 54 (2006) 101-112.
Could Rydberg matter also be present in the solar corona, helping to explain the anomalous elevated temperature and unusual spectral features that were once attributed to "coronium" (http://en.wikipedia.org/wiki/Coronium)? Again, as claimed by hydrinos?
There are many lines of evidence pointing to unusual electronic states of hydrogen over many decades, from the weird behavior of hydrogen-saturated palladium, nickel, titanium, etc, to the strange temperature distribution of hydrogen atoms in mixed gas plasmas, to difficult to explain interstellar and coronal spectral lines, etc. etc. which were "explained away" with unconvincing ad hoc classical mechanisms, many of which Mills picked up on and gathered in developing hydrino theory.
Excess energy production arising from a previously unknown mechanism in hydrogen containing systems is real and can be developed and commercialized; Mills has been observing it as "hydrino energy"; along with a lot of other people who have been observing it under various other names (cold fusion, etc). Sporadic reports of "excess heat", "dense hydrogen" or "dense deuterium" in an unusual electronic state, along with related unusual effects in highly loaded metal hydrides, plasmas, etc. go back as far as many decades, are real, but are not "hydrinos". They have to do with previously unanticipated / heretofore poorly understood phenomenon in atom clusters in condensed matter physics; dense clusters of hydrogen or deuterium atoms are capable of otherwise unattainable nuclear interactions (fusion or transmutation), and may also be a room temperature superconductor phase in metal lattices. It seems like Rydberg matter may be the explanation.
Blacklight Power may well be in an advantaged position to develop a real commercial energy production system, especially if Mills is willing to focus less on his theory and seriously go after commercial development. Nonetheless, it is a big engineering challenge to turn low-grade heat from costly materials into a competitive electrical power source.