Uncovering the Mystery of Proton Mass: The Role of Quarks and Gluons

Crazymechanic
Messages
831
Reaction score
12
I was checking and I couldn't find a similar thread so I am going to ask it here.
I read a paper from Franz Wilczek and I do see that Protons mass comes from the masses of quarks and gluons but they account for only part of the protons mass , so where does the other part comes from , I guess from the kinetic or whatever kind of energy they exert being part of the proton?
Is this true or not, I just got a little lost while reading maybe you could clear up some things .
 
Physics news on Phys.org
http://en.wikipedia.org/wiki/Quantum_chromodynamics

(From the article)

Quarks and the mass of the proton

In quantum chromodynamics, the modern theory of the nuclear force, most of the mass of the proton and the neutron is explained by special relativity. The mass of the proton is about eighty times greater than the sum of the rest masses of the quarks that make it up, while the gluons have zero rest mass. The extra energy of the quarks and gluons in a region within a proton, as compared to the rest energy of the quarks alone in the QCD vacuum, accounts for almost 99% of the mass. The rest mass of the proton is, thus, the invariant mass of the system of moving quarks and gluons that make up the particle, and, in such systems, even the energy of massless particles is still measured as part of the rest mass of the system.
 
Toponium is a hadron which is the bound state of a valance top quark and a valance antitop quark. Oversimplified presentations often state that top quarks don't form hadrons, because they decay to bottom quarks extremely rapidly after they are created, leaving no time to form a hadron. And, the vast majority of the time, this is true. But, the lifetime of a top quark is only an average lifetime. Sometimes it decays faster and sometimes it decays slower. In the highly improbable case that...
I'm following this paper by Kitaev on SL(2,R) representations and I'm having a problem in the normalization of the continuous eigenfunctions (eqs. (67)-(70)), which satisfy \langle f_s | f_{s'} \rangle = \int_{0}^{1} \frac{2}{(1-u)^2} f_s(u)^* f_{s'}(u) \, du. \tag{67} The singular contribution of the integral arises at the endpoint u=1 of the integral, and in the limit u \to 1, the function f_s(u) takes on the form f_s(u) \approx a_s (1-u)^{1/2 + i s} + a_s^* (1-u)^{1/2 - i s}. \tag{70}...
Back
Top