alexvong1995
- 2
- 0
I have learned in 1st year that the under-damped simple harmonic motion can be described by the differential equation m \frac {d^2 x} {dt^2} + b \frac {dx} {dt} + kx = 0 where m is the mass, b is the constant of linear drag and k is the spring constant
But the derivation is skipped and only the solution is given, which is x(t) = x_m e^{-\frac {bt} {2m}} \cos(\omega' t + \phi) Recently, I have learned Laplace transform on YT, so I try to come up with my own derivation, which is as followed.
m \frac {d^2 x} {dt^2} + b \frac {dx} {dt} + kx = 0
m s^2 X(s) - m s x(0) - m x'(0) + b s X(s) - b x(0) + k X(s) = 0
Let the initial displacement = x(0) = x_0, initial velocity = x'(0) = 0
m s^2 X(s) - m s x_0 + b s X(s) - b x_0 + k X(s) = 0
X(s) (m s^2 + b s + k) = x_0 (m s + b)
X(s) = x_0 \frac {m s + b} {m s^2 + b s + k}
X(s) = x_0 \frac {s + \frac {b} {m}} {s^2 + \frac {b} {m} s + \frac {k} {m}}
Complete the square,
X(s) = x_0 \frac {s + \frac {b} {m}} { (s^2 + \frac {b} {m} s + \frac {b^2} {4 m^2}) + \frac {k} {m} - \frac {b^2} {4 m^2}}
X(s) = x_0 \frac { (s + \frac {b} {2m}) + \frac {b} {2m} } { (s + \frac {b} {2m})^2 + \frac {k} {m} - \frac {b^2} {4 m^2} }
X(s) = x_0 \left [ \frac { s + \frac {b} {2m} } { (s + \frac {b} {2m})^2 + \frac {k} {m} - \frac {b^2} {4 m^2} } + \frac { \frac {b} {2m} } { (s + \frac {b} {2m})^2 + \frac {k} {m} - \frac {b^2} {4 m^2} } \right ]
Apply the First Shifting Theorem,
x(t) = x_0 e^{- \frac {b} {2m} t } \cos \left ( \sqrt{\frac {k} {m} - \frac {b^2} {4 m^2}} t \right ) + x_0 \frac {b} {2m} \frac {1} { \sqrt { \frac {k} {m} - \frac {b^2} {4 m^2} } } e^{- \frac {b} {2m} t } \sin \left ( \sqrt{\frac {k} {m} - \frac {b^2} {4 m^2}} t \right )
x(t) = x_0 e^{- \frac {b} {2m} t } \cos \left ( \frac { \sqrt{4 k m - b^2} } {2 m} t \right ) + x_0 \frac {b} {2m} \frac {2 m} { \sqrt{4 k m - b^2} } e^{- \frac {b} {2m} t } \sin \left ( \frac { \sqrt{4 k m - b^2} } {2 m} t \right )
x(t) = x_0 e^{- \frac {b} {2m} t } \cos \left ( \frac { \sqrt{4 k m - b^2} } {2 m} t \right ) + x_0 \frac {b} { \sqrt {4 k m - b^2} } e^{- \frac {b} {2m} t } \sin \left ( \frac { \sqrt{4 k m - b^2} } {2 m} t \right )
To convert the answer into the form x_m e^{-\frac {bt} {2m}} \cos(\omega' t + \phi), we must compute the hypotenuse of the triangle with side 1 and \frac {b} { \sqrt {4 k m - b^2} }
\sqrt{ 1^2 + \frac {b^2} {4 k m - b^2} }
= \sqrt{ \frac {4 k m - b^2 + b^2} {4 k m - b^2} }
= 2 \sqrt{ \frac {k m} {4 k m - b^2} }
x(t) = 2 x_0 e^{- \frac {b} {2m} t } \sqrt{ \frac {k m} {4 k m - b^2} } \left [ \frac {1} { 2 \sqrt{ \frac {k m} {4 k m - b^2} } } \cos \left ( \frac { \sqrt{4 k m - b^2} } {2 m} t \right ) + \frac { \frac {b} { \sqrt {4 k m - b^2} } } { 2 \sqrt{ \frac {k m} {4 k m - b^2} } } \sin \left ( \frac { \sqrt{4 k m - b^2} } {2 m} t \right ) \right ]
If \cos \phi = \frac {1} { 2 \sqrt{ \frac {k m} {4 k m - b^2} } }, then \sin \phi = \frac { \frac {b} { \sqrt {4 k m - b^2} } } { 2 \sqrt{ \frac {k m} {4 k m - b^2} } }
By \cos(A) \cos(B) + \sin(A) \sin(B) = \cos(A-B),
x(t) = 2 x_0 e^{- \frac {b} {2m} t } \sqrt{ \frac {k m} {4 k m - b^2} } \cos \left [ \frac { \sqrt{4 k m - b^2} } {2 m} t - \arccos \left ( \frac {1} {2} \sqrt{ \frac {4 k m - b^2} {k m} } \right ) \right ]
Is the derivation correct?
I am pretty confident with \omega' = \frac { \sqrt{4 k m - b^2} } {2 m}
However, I am not so sure about the amplitude and the phase. Is the following true?
x_m = 2 x_0 \sqrt{ \frac {k m} {4 k m - b^2} }
and
\phi = \arccos \left ( \frac {1} {2} \sqrt{ \frac {4 k m - b^2} {k m} } \right ) = \arcsin \left ( \frac { \frac {b} { \sqrt {4 k m - b^2} } } { 2 \sqrt{ \frac {k m} {4 k m - b^2} } } \right ) = \arcsin \left ( \frac {b} {2 \sqrt{k m} } \right )
Finally, is there an easier way to come up to a solution? Doing these seems to be very exhausting and prone to careless mistakes. Also, I want to learn about over-damping and critical damping. Isn't the same differential equation apply? What are their differences? Thanks for reading my question! I know it is long!
But the derivation is skipped and only the solution is given, which is x(t) = x_m e^{-\frac {bt} {2m}} \cos(\omega' t + \phi) Recently, I have learned Laplace transform on YT, so I try to come up with my own derivation, which is as followed.
m \frac {d^2 x} {dt^2} + b \frac {dx} {dt} + kx = 0
m s^2 X(s) - m s x(0) - m x'(0) + b s X(s) - b x(0) + k X(s) = 0
Let the initial displacement = x(0) = x_0, initial velocity = x'(0) = 0
m s^2 X(s) - m s x_0 + b s X(s) - b x_0 + k X(s) = 0
X(s) (m s^2 + b s + k) = x_0 (m s + b)
X(s) = x_0 \frac {m s + b} {m s^2 + b s + k}
X(s) = x_0 \frac {s + \frac {b} {m}} {s^2 + \frac {b} {m} s + \frac {k} {m}}
Complete the square,
X(s) = x_0 \frac {s + \frac {b} {m}} { (s^2 + \frac {b} {m} s + \frac {b^2} {4 m^2}) + \frac {k} {m} - \frac {b^2} {4 m^2}}
X(s) = x_0 \frac { (s + \frac {b} {2m}) + \frac {b} {2m} } { (s + \frac {b} {2m})^2 + \frac {k} {m} - \frac {b^2} {4 m^2} }
X(s) = x_0 \left [ \frac { s + \frac {b} {2m} } { (s + \frac {b} {2m})^2 + \frac {k} {m} - \frac {b^2} {4 m^2} } + \frac { \frac {b} {2m} } { (s + \frac {b} {2m})^2 + \frac {k} {m} - \frac {b^2} {4 m^2} } \right ]
Apply the First Shifting Theorem,
x(t) = x_0 e^{- \frac {b} {2m} t } \cos \left ( \sqrt{\frac {k} {m} - \frac {b^2} {4 m^2}} t \right ) + x_0 \frac {b} {2m} \frac {1} { \sqrt { \frac {k} {m} - \frac {b^2} {4 m^2} } } e^{- \frac {b} {2m} t } \sin \left ( \sqrt{\frac {k} {m} - \frac {b^2} {4 m^2}} t \right )
x(t) = x_0 e^{- \frac {b} {2m} t } \cos \left ( \frac { \sqrt{4 k m - b^2} } {2 m} t \right ) + x_0 \frac {b} {2m} \frac {2 m} { \sqrt{4 k m - b^2} } e^{- \frac {b} {2m} t } \sin \left ( \frac { \sqrt{4 k m - b^2} } {2 m} t \right )
x(t) = x_0 e^{- \frac {b} {2m} t } \cos \left ( \frac { \sqrt{4 k m - b^2} } {2 m} t \right ) + x_0 \frac {b} { \sqrt {4 k m - b^2} } e^{- \frac {b} {2m} t } \sin \left ( \frac { \sqrt{4 k m - b^2} } {2 m} t \right )
To convert the answer into the form x_m e^{-\frac {bt} {2m}} \cos(\omega' t + \phi), we must compute the hypotenuse of the triangle with side 1 and \frac {b} { \sqrt {4 k m - b^2} }
\sqrt{ 1^2 + \frac {b^2} {4 k m - b^2} }
= \sqrt{ \frac {4 k m - b^2 + b^2} {4 k m - b^2} }
= 2 \sqrt{ \frac {k m} {4 k m - b^2} }
x(t) = 2 x_0 e^{- \frac {b} {2m} t } \sqrt{ \frac {k m} {4 k m - b^2} } \left [ \frac {1} { 2 \sqrt{ \frac {k m} {4 k m - b^2} } } \cos \left ( \frac { \sqrt{4 k m - b^2} } {2 m} t \right ) + \frac { \frac {b} { \sqrt {4 k m - b^2} } } { 2 \sqrt{ \frac {k m} {4 k m - b^2} } } \sin \left ( \frac { \sqrt{4 k m - b^2} } {2 m} t \right ) \right ]
If \cos \phi = \frac {1} { 2 \sqrt{ \frac {k m} {4 k m - b^2} } }, then \sin \phi = \frac { \frac {b} { \sqrt {4 k m - b^2} } } { 2 \sqrt{ \frac {k m} {4 k m - b^2} } }
By \cos(A) \cos(B) + \sin(A) \sin(B) = \cos(A-B),
x(t) = 2 x_0 e^{- \frac {b} {2m} t } \sqrt{ \frac {k m} {4 k m - b^2} } \cos \left [ \frac { \sqrt{4 k m - b^2} } {2 m} t - \arccos \left ( \frac {1} {2} \sqrt{ \frac {4 k m - b^2} {k m} } \right ) \right ]
Is the derivation correct?
I am pretty confident with \omega' = \frac { \sqrt{4 k m - b^2} } {2 m}
However, I am not so sure about the amplitude and the phase. Is the following true?
x_m = 2 x_0 \sqrt{ \frac {k m} {4 k m - b^2} }
and
\phi = \arccos \left ( \frac {1} {2} \sqrt{ \frac {4 k m - b^2} {k m} } \right ) = \arcsin \left ( \frac { \frac {b} { \sqrt {4 k m - b^2} } } { 2 \sqrt{ \frac {k m} {4 k m - b^2} } } \right ) = \arcsin \left ( \frac {b} {2 \sqrt{k m} } \right )
Finally, is there an easier way to come up to a solution? Doing these seems to be very exhausting and prone to careless mistakes. Also, I want to learn about over-damping and critical damping. Isn't the same differential equation apply? What are their differences? Thanks for reading my question! I know it is long!