MHB Understand Polynomial Terms: Like & Unlike Terms

  • Thread starter Thread starter PeekaTweak
  • Start date Start date
  • Tags Tags
    Polynomial Terms
PeekaTweak
Messages
1
Reaction score
0
I would like to have someone who would be willing to explain me what is a like term and an unlike term in terms of set theory. I'm just an high-scool student, but I really would like to understand it from that point of view anyway. It doesn't have to be a 1000 pages long of explanations.
 
Mathematics news on Phys.org
PeekaTweak said:
I would like to have someone who would be willing to explain me what is a like term and an unlike term in terms of set theory. I'm just an high-scool student, but I really would like to understand it from that point of view anyway. It doesn't have to be a 1000 pages long of explanations.
In terms of polynomials (I can't think of how to applied this to sets) a "like" term is a comparison between two terms of the polynomial. For example, consider the two polynomials [math]3x^2 + 2x - 3[/math] and [math]5x^3 - 3x + 7[/math]. The like terms are the terms that are in both polynomials. Here the there is only one like term: the one in x. (I suppose you could call the constant terms "like" as they are both terms in [math]x^0[/math] but I don't think anyone does this.)

-Dan
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top