Let'sthink
- 355
- 82
Rewrite (3) and (7) asLet'sthink said:(x² +y²) (b² +1 +2bcosφ) = a² ---------------------- (3), we need to eliminate cosφ and bring in x
For that
Writing original expression
(x+iy) = [a/(b+cosφ+i sinφ)] ----------------------(4) Taking complex conjugate
(x-iy) = [a/(b+cosφ-i sinφ)] -----------------------(5); adding (4) and (5) we get
[2a(b+cosφ)/(b² +1 +2bcosφ)] = 2x --------------(6) multiplying (3) and (6) we get
[2a(b+cosφ)(x² +y²)] = 2xa² or
[2(b+cosφ)(x² +y²)] = 2xa ------ (7)
(b² +1 +2bcosφ) = a² /((x² +y²) ----------- (3') and rewritten (7) becomes, [2(b+cosφ)(x² +y²)] = 2xa ------ (7) or (b+cosφ) = xa/(x² +y²), multiplying by 2b gives
2b²+2bcos φ = 2bxa/(x² +y²), ------ (7'). Now (7') - (3') gives
(b² -1)(x² +y²) = 2abx - a² or
2abx = (b² -1)(x² +y²) + a²
Although I will not like to call them different methods but using complex conjugate property gives us the shortest, neatest, simplest and the sweetest derivation.