avery said:
https://public.blu.livefilestore.com/y1pUFOQhbheBgnPFLHsIS8DGoDPSxjHliKQuwCM-4X-HjvFLZRt9iw0ajJNPQkun1dVZ8U0gyH4p2hVyfxNA-YpPg/x.png?psid=1
Don't overload your indices. An index shouldn't appear more than twice in any term. Valid ways of writing your original equation would be:
A^\mu =g^{\sigma \mu}A_{\sigma }
A^\rho =g^{\mu \rho}A_{\mu}
A^\nu =g^{\lambda \nu }A_{\lambda }
etc.
avery said:
if Aμ is a (1x2 row vector) in the two dimensional surface of the sphere.
how can I understand the following equation with a simple numerical example
Taking t=constant and r=constant, the metric of a two-sphere is:
ds^2=r^2(d\theta ^2+sin^2\theta d\phi^2)
Written as a matrix:
g_{\mu \sigma}=\begin{bmatrix}<br />
r^2 & 0\\ <br />
0 & r^2sin^2\theta <br />
\end{bmatrix}
where μ,σ range from θ to ϕ.
The inverse metric is therefore:
g^{\mu \sigma}=\begin{bmatrix}<br />
r^{-2} & 0\\ <br />
0 & r^{-2}csc^2\theta <br />
\end{bmatrix}
If the components of the one-form A are A_\mu=\begin{bmatrix}<br />
a & b<br />
\end{bmatrix}, then the components of the vector A are given by:
A^{\sigma}=g^{\mu \sigma}A_{\mu}=<br />
\begin{bmatrix}<br />
a & b<br />
\end{bmatrix}<br />
\begin{bmatrix}<br />
r^{-2} & 0\\ <br />
0 & r^{-2}csc^2\theta <br />
\end{bmatrix} =<br />
\begin{bmatrix}<br />
ar^{-2} & br^{-2}csc^2\theta<br />
\end{bmatrix}
avery said:
(gμμ) has a fixed valued? or it depends on Aμ
The components of the (inverse) metric tensor are independent of the components of any particular one-form.