MHB Understanding Differentiability and Continuity in Complex Analysis

Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I have been reading two books on complex analysis and my problem is that the two books give slightly different and possibly incompatible proofs that, for a function of a complex variable, differentiability implies continuity ...

The two books are as follows:

"Functions of a Complex Variable I" (Second Edition) ... by John B. Conway

"Complex Analysis for Mathematics and Engineering" by John H. Mathews and Russel W. Howell (M&H) [Fifth Edition] ... Conway's proof that for a function of a complex variable, differentiability implies continuity ... reads as follows:
View attachment 9258
Mathews and Howell's proof that for a function of a complex variable, differentiability implies continuity ... reads as follows:
View attachment 9259
Now, as can be seen in the above proofs, Conway uses modulus/norm signs around the expressions in the proof while Mathews and Howell do not ...Can someone explain the differences ... are both correct ... ?

Surely the Conway proof is more valid as the proof involves limits which involve ideas like "close to" which need modulus/norms ...Hope someone can clarify this issue ...

Peter
 

Attachments

  • Conway - Proposition 2.2 .png
    Conway - Proposition 2.2 .png
    5.1 KB · Views: 169
  • M&H - Theorem 3.1 ... .png
    M&H - Theorem 3.1 ... .png
    13.7 KB · Views: 174
Physics news on Phys.org
They are equivalent. If \lim_{x\to a} f(x)= b then \lim_{x\to a} |f(x)|= |b| and if b= 0 the converse is also true.
 
HallsofIvy said:
They are equivalent. If \lim_{x\to a} f(x)= b then \lim_{x\to a} |f(x)|= |b| and if b= 0 the converse is also true.

Thanks for the help HallsofIvy ...

But ... it leaves me thinking that Conway made a pointless elaboration of his proof as modulus/norm signs were unnecessary ... indeed, I have no idea why he included them ...

Peter
 
A sphere as topological manifold can be defined by gluing together the boundary of two disk. Basically one starts assigning each disk the subspace topology from ##\mathbb R^2## and then taking the quotient topology obtained by gluing their boundaries. Starting from the above definition of 2-sphere as topological manifold, shows that it is homeomorphic to the "embedded" sphere understood as subset of ##\mathbb R^3## in the subspace topology.
Back
Top